| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523 | import Cartesian3 from "./Cartesian3.js";import Cartographic from "./Cartographic.js";import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import Ellipsoid from "./Ellipsoid.js";import CesiumMath from "./Math.js";function setConstants(ellipsoidGeodesic) {  const uSquared = ellipsoidGeodesic._uSquared;  const a = ellipsoidGeodesic._ellipsoid.maximumRadius;  const b = ellipsoidGeodesic._ellipsoid.minimumRadius;  const f = (a - b) / a;  const cosineHeading = Math.cos(ellipsoidGeodesic._startHeading);  const sineHeading = Math.sin(ellipsoidGeodesic._startHeading);  const tanU = (1 - f) * Math.tan(ellipsoidGeodesic._start.latitude);  const cosineU = 1.0 / Math.sqrt(1.0 + tanU * tanU);  const sineU = cosineU * tanU;  const sigma = Math.atan2(tanU, cosineHeading);  const sineAlpha = cosineU * sineHeading;  const sineSquaredAlpha = sineAlpha * sineAlpha;  const cosineSquaredAlpha = 1.0 - sineSquaredAlpha;  const cosineAlpha = Math.sqrt(cosineSquaredAlpha);  const u2Over4 = uSquared / 4.0;  const u4Over16 = u2Over4 * u2Over4;  const u6Over64 = u4Over16 * u2Over4;  const u8Over256 = u4Over16 * u4Over16;  const a0 =    1.0 +    u2Over4 -    (3.0 * u4Over16) / 4.0 +    (5.0 * u6Over64) / 4.0 -    (175.0 * u8Over256) / 64.0;  const a1 = 1.0 - u2Over4 + (15.0 * u4Over16) / 8.0 - (35.0 * u6Over64) / 8.0;  const a2 = 1.0 - 3.0 * u2Over4 + (35.0 * u4Over16) / 4.0;  const a3 = 1.0 - 5.0 * u2Over4;  const distanceRatio =    a0 * sigma -    (a1 * Math.sin(2.0 * sigma) * u2Over4) / 2.0 -    (a2 * Math.sin(4.0 * sigma) * u4Over16) / 16.0 -    (a3 * Math.sin(6.0 * sigma) * u6Over64) / 48.0 -    (Math.sin(8.0 * sigma) * 5.0 * u8Over256) / 512;  const constants = ellipsoidGeodesic._constants;  constants.a = a;  constants.b = b;  constants.f = f;  constants.cosineHeading = cosineHeading;  constants.sineHeading = sineHeading;  constants.tanU = tanU;  constants.cosineU = cosineU;  constants.sineU = sineU;  constants.sigma = sigma;  constants.sineAlpha = sineAlpha;  constants.sineSquaredAlpha = sineSquaredAlpha;  constants.cosineSquaredAlpha = cosineSquaredAlpha;  constants.cosineAlpha = cosineAlpha;  constants.u2Over4 = u2Over4;  constants.u4Over16 = u4Over16;  constants.u6Over64 = u6Over64;  constants.u8Over256 = u8Over256;  constants.a0 = a0;  constants.a1 = a1;  constants.a2 = a2;  constants.a3 = a3;  constants.distanceRatio = distanceRatio;}function computeC(f, cosineSquaredAlpha) {  return (    (f * cosineSquaredAlpha * (4.0 + f * (4.0 - 3.0 * cosineSquaredAlpha))) /    16.0  );}function computeDeltaLambda(  f,  sineAlpha,  cosineSquaredAlpha,  sigma,  sineSigma,  cosineSigma,  cosineTwiceSigmaMidpoint) {  const C = computeC(f, cosineSquaredAlpha);  return (    (1.0 - C) *    f *    sineAlpha *    (sigma +      C *        sineSigma *        (cosineTwiceSigmaMidpoint +          C *            cosineSigma *            (2.0 * cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint - 1.0)))  );}function vincentyInverseFormula(  ellipsoidGeodesic,  major,  minor,  firstLongitude,  firstLatitude,  secondLongitude,  secondLatitude) {  const eff = (major - minor) / major;  const l = secondLongitude - firstLongitude;  const u1 = Math.atan((1 - eff) * Math.tan(firstLatitude));  const u2 = Math.atan((1 - eff) * Math.tan(secondLatitude));  const cosineU1 = Math.cos(u1);  const sineU1 = Math.sin(u1);  const cosineU2 = Math.cos(u2);  const sineU2 = Math.sin(u2);  const cc = cosineU1 * cosineU2;  const cs = cosineU1 * sineU2;  const ss = sineU1 * sineU2;  const sc = sineU1 * cosineU2;  let lambda = l;  let lambdaDot = CesiumMath.TWO_PI;  let cosineLambda = Math.cos(lambda);  let sineLambda = Math.sin(lambda);  let sigma;  let cosineSigma;  let sineSigma;  let cosineSquaredAlpha;  let cosineTwiceSigmaMidpoint;  do {    cosineLambda = Math.cos(lambda);    sineLambda = Math.sin(lambda);    const temp = cs - sc * cosineLambda;    sineSigma = Math.sqrt(      cosineU2 * cosineU2 * sineLambda * sineLambda + temp * temp    );    cosineSigma = ss + cc * cosineLambda;    sigma = Math.atan2(sineSigma, cosineSigma);    let sineAlpha;    if (sineSigma === 0.0) {      sineAlpha = 0.0;      cosineSquaredAlpha = 1.0;    } else {      sineAlpha = (cc * sineLambda) / sineSigma;      cosineSquaredAlpha = 1.0 - sineAlpha * sineAlpha;    }    lambdaDot = lambda;    cosineTwiceSigmaMidpoint = cosineSigma - (2.0 * ss) / cosineSquaredAlpha;    if (!isFinite(cosineTwiceSigmaMidpoint)) {      cosineTwiceSigmaMidpoint = 0.0;    }    lambda =      l +      computeDeltaLambda(        eff,        sineAlpha,        cosineSquaredAlpha,        sigma,        sineSigma,        cosineSigma,        cosineTwiceSigmaMidpoint      );  } while (Math.abs(lambda - lambdaDot) > CesiumMath.EPSILON12);  const uSquared =    (cosineSquaredAlpha * (major * major - minor * minor)) / (minor * minor);  const A =    1.0 +    (uSquared *      (4096.0 + uSquared * (uSquared * (320.0 - 175.0 * uSquared) - 768.0))) /      16384.0;  const B =    (uSquared *      (256.0 + uSquared * (uSquared * (74.0 - 47.0 * uSquared) - 128.0))) /    1024.0;  const cosineSquaredTwiceSigmaMidpoint =    cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint;  const deltaSigma =    B *    sineSigma *    (cosineTwiceSigmaMidpoint +      (B *        (cosineSigma * (2.0 * cosineSquaredTwiceSigmaMidpoint - 1.0) -          (B *            cosineTwiceSigmaMidpoint *            (4.0 * sineSigma * sineSigma - 3.0) *            (4.0 * cosineSquaredTwiceSigmaMidpoint - 3.0)) /            6.0)) /        4.0);  const distance = minor * A * (sigma - deltaSigma);  const startHeading = Math.atan2(    cosineU2 * sineLambda,    cs - sc * cosineLambda  );  const endHeading = Math.atan2(cosineU1 * sineLambda, cs * cosineLambda - sc);  ellipsoidGeodesic._distance = distance;  ellipsoidGeodesic._startHeading = startHeading;  ellipsoidGeodesic._endHeading = endHeading;  ellipsoidGeodesic._uSquared = uSquared;}const scratchCart1 = new Cartesian3();const scratchCart2 = new Cartesian3();function computeProperties(ellipsoidGeodesic, start, end, ellipsoid) {  const firstCartesian = Cartesian3.normalize(    ellipsoid.cartographicToCartesian(start, scratchCart2),    scratchCart1  );  const lastCartesian = Cartesian3.normalize(    ellipsoid.cartographicToCartesian(end, scratchCart2),    scratchCart2  );  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number.greaterThanOrEquals(    "value",    Math.abs(      Math.abs(Cartesian3.angleBetween(firstCartesian, lastCartesian)) - Math.PI    ),    0.0125  );  //>>includeEnd('debug');  vincentyInverseFormula(    ellipsoidGeodesic,    ellipsoid.maximumRadius,    ellipsoid.minimumRadius,    start.longitude,    start.latitude,    end.longitude,    end.latitude  );  ellipsoidGeodesic._start = Cartographic.clone(    start,    ellipsoidGeodesic._start  );  ellipsoidGeodesic._end = Cartographic.clone(end, ellipsoidGeodesic._end);  ellipsoidGeodesic._start.height = 0;  ellipsoidGeodesic._end.height = 0;  setConstants(ellipsoidGeodesic);}/** * Initializes a geodesic on the ellipsoid connecting the two provided planetodetic points. * * @alias EllipsoidGeodesic * @constructor * * @param {Cartographic} [start] The initial planetodetic point on the path. * @param {Cartographic} [end] The final planetodetic point on the path. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the geodesic lies. */function EllipsoidGeodesic(start, end, ellipsoid) {  const e = defaultValue(ellipsoid, Ellipsoid.WGS84);  this._ellipsoid = e;  this._start = new Cartographic();  this._end = new Cartographic();  this._constants = {};  this._startHeading = undefined;  this._endHeading = undefined;  this._distance = undefined;  this._uSquared = undefined;  if (defined(start) && defined(end)) {    computeProperties(this, start, end, e);  }}Object.defineProperties(EllipsoidGeodesic.prototype, {  /**   * Gets the ellipsoid.   * @memberof EllipsoidGeodesic.prototype   * @type {Ellipsoid}   * @readonly   */  ellipsoid: {    get: function () {      return this._ellipsoid;    },  },  /**   * Gets the surface distance between the start and end point   * @memberof EllipsoidGeodesic.prototype   * @type {Number}   * @readonly   */  surfaceDistance: {    get: function () {      //>>includeStart('debug', pragmas.debug);      Check.defined("distance", this._distance);      //>>includeEnd('debug');      return this._distance;    },  },  /**   * Gets the initial planetodetic point on the path.   * @memberof EllipsoidGeodesic.prototype   * @type {Cartographic}   * @readonly   */  start: {    get: function () {      return this._start;    },  },  /**   * Gets the final planetodetic point on the path.   * @memberof EllipsoidGeodesic.prototype   * @type {Cartographic}   * @readonly   */  end: {    get: function () {      return this._end;    },  },  /**   * Gets the heading at the initial point.   * @memberof EllipsoidGeodesic.prototype   * @type {Number}   * @readonly   */  startHeading: {    get: function () {      //>>includeStart('debug', pragmas.debug);      Check.defined("distance", this._distance);      //>>includeEnd('debug');      return this._startHeading;    },  },  /**   * Gets the heading at the final point.   * @memberof EllipsoidGeodesic.prototype   * @type {Number}   * @readonly   */  endHeading: {    get: function () {      //>>includeStart('debug', pragmas.debug);      Check.defined("distance", this._distance);      //>>includeEnd('debug');      return this._endHeading;    },  },});/** * Sets the start and end points of the geodesic * * @param {Cartographic} start The initial planetodetic point on the path. * @param {Cartographic} end The final planetodetic point on the path. */EllipsoidGeodesic.prototype.setEndPoints = function (start, end) {  //>>includeStart('debug', pragmas.debug);  Check.defined("start", start);  Check.defined("end", end);  //>>includeEnd('debug');  computeProperties(this, start, end, this._ellipsoid);};/** * Provides the location of a point at the indicated portion along the geodesic. * * @param {Number} fraction The portion of the distance between the initial and final points. * @param {Cartographic} [result] The object in which to store the result. * @returns {Cartographic} The location of the point along the geodesic. */EllipsoidGeodesic.prototype.interpolateUsingFraction = function (  fraction,  result) {  return this.interpolateUsingSurfaceDistance(    this._distance * fraction,    result  );};/** * Provides the location of a point at the indicated distance along the geodesic. * * @param {Number} distance The distance from the inital point to the point of interest along the geodesic * @param {Cartographic} [result] The object in which to store the result. * @returns {Cartographic} The location of the point along the geodesic. * * @exception {DeveloperError} start and end must be set before calling function interpolateUsingSurfaceDistance */EllipsoidGeodesic.prototype.interpolateUsingSurfaceDistance = function (  distance,  result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("distance", this._distance);  //>>includeEnd('debug');  const constants = this._constants;  const s = constants.distanceRatio + distance / constants.b;  const cosine2S = Math.cos(2.0 * s);  const cosine4S = Math.cos(4.0 * s);  const cosine6S = Math.cos(6.0 * s);  const sine2S = Math.sin(2.0 * s);  const sine4S = Math.sin(4.0 * s);  const sine6S = Math.sin(6.0 * s);  const sine8S = Math.sin(8.0 * s);  const s2 = s * s;  const s3 = s * s2;  const u8Over256 = constants.u8Over256;  const u2Over4 = constants.u2Over4;  const u6Over64 = constants.u6Over64;  const u4Over16 = constants.u4Over16;  let sigma =    (2.0 * s3 * u8Over256 * cosine2S) / 3.0 +    s *      (1.0 -        u2Over4 +        (7.0 * u4Over16) / 4.0 -        (15.0 * u6Over64) / 4.0 +        (579.0 * u8Over256) / 64.0 -        (u4Over16 - (15.0 * u6Over64) / 4.0 + (187.0 * u8Over256) / 16.0) *          cosine2S -        ((5.0 * u6Over64) / 4.0 - (115.0 * u8Over256) / 16.0) * cosine4S -        (29.0 * u8Over256 * cosine6S) / 16.0) +    (u2Over4 / 2.0 -      u4Over16 +      (71.0 * u6Over64) / 32.0 -      (85.0 * u8Over256) / 16.0) *      sine2S +    ((5.0 * u4Over16) / 16.0 -      (5.0 * u6Over64) / 4.0 +      (383.0 * u8Over256) / 96.0) *      sine4S -    s2 *      ((u6Over64 - (11.0 * u8Over256) / 2.0) * sine2S +        (5.0 * u8Over256 * sine4S) / 2.0) +    ((29.0 * u6Over64) / 96.0 - (29.0 * u8Over256) / 16.0) * sine6S +    (539.0 * u8Over256 * sine8S) / 1536.0;  const theta = Math.asin(Math.sin(sigma) * constants.cosineAlpha);  const latitude = Math.atan((constants.a / constants.b) * Math.tan(theta));  // Redefine in terms of relative argument of latitude.  sigma = sigma - constants.sigma;  const cosineTwiceSigmaMidpoint = Math.cos(2.0 * constants.sigma + sigma);  const sineSigma = Math.sin(sigma);  const cosineSigma = Math.cos(sigma);  const cc = constants.cosineU * cosineSigma;  const ss = constants.sineU * sineSigma;  const lambda = Math.atan2(    sineSigma * constants.sineHeading,    cc - ss * constants.cosineHeading  );  const l =    lambda -    computeDeltaLambda(      constants.f,      constants.sineAlpha,      constants.cosineSquaredAlpha,      sigma,      sineSigma,      cosineSigma,      cosineTwiceSigmaMidpoint    );  if (defined(result)) {    result.longitude = this._start.longitude + l;    result.latitude = latitude;    result.height = 0.0;    return result;  }  return new Cartographic(this._start.longitude + l, latitude, 0.0);};export default EllipsoidGeodesic;
 |