| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651 | import arrayFill from "./arrayFill.js";import BoundingSphere from "./BoundingSphere.js";import Cartesian2 from "./Cartesian2.js";import Cartesian3 from "./Cartesian3.js";import ComponentDatatype from "./ComponentDatatype.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Ellipsoid from "./Ellipsoid.js";import Geometry from "./Geometry.js";import GeometryAttribute from "./GeometryAttribute.js";import GeometryAttributes from "./GeometryAttributes.js";import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";import IndexDatatype from "./IndexDatatype.js";import CesiumMath from "./Math.js";import PrimitiveType from "./PrimitiveType.js";import VertexFormat from "./VertexFormat.js";const scratchPosition = new Cartesian3();const scratchNormal = new Cartesian3();const scratchTangent = new Cartesian3();const scratchBitangent = new Cartesian3();const scratchNormalST = new Cartesian3();const defaultRadii = new Cartesian3(1.0, 1.0, 1.0);const cos = Math.cos;const sin = Math.sin;/** * A description of an ellipsoid centered at the origin. * * @alias EllipsoidGeometry * @constructor * * @param {Object} [options] Object with the following properties: * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks. * @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} options.slicePartitions cannot be less than three. * @exception {DeveloperError} options.stackPartitions cannot be less than three. * * @see EllipsoidGeometry#createGeometry * * @example * const ellipsoid = new Cesium.EllipsoidGeometry({ *   vertexFormat : Cesium.VertexFormat.POSITION_ONLY, *   radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0) * }); * const geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid); */function EllipsoidGeometry(options) {  options = defaultValue(options, defaultValue.EMPTY_OBJECT);  const radii = defaultValue(options.radii, defaultRadii);  const innerRadii = defaultValue(options.innerRadii, radii);  const minimumClock = defaultValue(options.minimumClock, 0.0);  const maximumClock = defaultValue(options.maximumClock, CesiumMath.TWO_PI);  const minimumCone = defaultValue(options.minimumCone, 0.0);  const maximumCone = defaultValue(options.maximumCone, CesiumMath.PI);  const stackPartitions = Math.round(defaultValue(options.stackPartitions, 64));  const slicePartitions = Math.round(defaultValue(options.slicePartitions, 64));  const vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT);  //>>includeStart('debug', pragmas.debug);  if (slicePartitions < 3) {    throw new DeveloperError(      "options.slicePartitions cannot be less than three."    );  }  if (stackPartitions < 3) {    throw new DeveloperError(      "options.stackPartitions cannot be less than three."    );  }  //>>includeEnd('debug');  this._radii = Cartesian3.clone(radii);  this._innerRadii = Cartesian3.clone(innerRadii);  this._minimumClock = minimumClock;  this._maximumClock = maximumClock;  this._minimumCone = minimumCone;  this._maximumCone = maximumCone;  this._stackPartitions = stackPartitions;  this._slicePartitions = slicePartitions;  this._vertexFormat = VertexFormat.clone(vertexFormat);  this._offsetAttribute = options.offsetAttribute;  this._workerName = "createEllipsoidGeometry";}/** * The number of elements used to pack the object into an array. * @type {Number} */EllipsoidGeometry.packedLength =  2 * Cartesian3.packedLength + VertexFormat.packedLength + 7;/** * Stores the provided instance into the provided array. * * @param {EllipsoidGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */EllipsoidGeometry.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required");  }  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  Cartesian3.pack(value._radii, array, startingIndex);  startingIndex += Cartesian3.packedLength;  Cartesian3.pack(value._innerRadii, array, startingIndex);  startingIndex += Cartesian3.packedLength;  VertexFormat.pack(value._vertexFormat, array, startingIndex);  startingIndex += VertexFormat.packedLength;  array[startingIndex++] = value._minimumClock;  array[startingIndex++] = value._maximumClock;  array[startingIndex++] = value._minimumCone;  array[startingIndex++] = value._maximumCone;  array[startingIndex++] = value._stackPartitions;  array[startingIndex++] = value._slicePartitions;  array[startingIndex] = defaultValue(value._offsetAttribute, -1);  return array;};const scratchRadii = new Cartesian3();const scratchInnerRadii = new Cartesian3();const scratchVertexFormat = new VertexFormat();const scratchOptions = {  radii: scratchRadii,  innerRadii: scratchInnerRadii,  vertexFormat: scratchVertexFormat,  minimumClock: undefined,  maximumClock: undefined,  minimumCone: undefined,  maximumCone: undefined,  stackPartitions: undefined,  slicePartitions: undefined,  offsetAttribute: undefined,};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipsoidGeometry} [result] The object into which to store the result. * @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided. */EllipsoidGeometry.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  const radii = Cartesian3.unpack(array, startingIndex, scratchRadii);  startingIndex += Cartesian3.packedLength;  const innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);  startingIndex += Cartesian3.packedLength;  const vertexFormat = VertexFormat.unpack(    array,    startingIndex,    scratchVertexFormat  );  startingIndex += VertexFormat.packedLength;  const minimumClock = array[startingIndex++];  const maximumClock = array[startingIndex++];  const minimumCone = array[startingIndex++];  const maximumCone = array[startingIndex++];  const stackPartitions = array[startingIndex++];  const slicePartitions = array[startingIndex++];  const offsetAttribute = array[startingIndex];  if (!defined(result)) {    scratchOptions.minimumClock = minimumClock;    scratchOptions.maximumClock = maximumClock;    scratchOptions.minimumCone = minimumCone;    scratchOptions.maximumCone = maximumCone;    scratchOptions.stackPartitions = stackPartitions;    scratchOptions.slicePartitions = slicePartitions;    scratchOptions.offsetAttribute =      offsetAttribute === -1 ? undefined : offsetAttribute;    return new EllipsoidGeometry(scratchOptions);  }  result._radii = Cartesian3.clone(radii, result._radii);  result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);  result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);  result._minimumClock = minimumClock;  result._maximumClock = maximumClock;  result._minimumCone = minimumCone;  result._maximumCone = maximumCone;  result._stackPartitions = stackPartitions;  result._slicePartitions = slicePartitions;  result._offsetAttribute =    offsetAttribute === -1 ? undefined : offsetAttribute;  return result;};/** * Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid. * @returns {Geometry|undefined} The computed vertices and indices. */EllipsoidGeometry.createGeometry = function (ellipsoidGeometry) {  const radii = ellipsoidGeometry._radii;  if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {    return;  }  const innerRadii = ellipsoidGeometry._innerRadii;  if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {    return;  }  const minimumClock = ellipsoidGeometry._minimumClock;  const maximumClock = ellipsoidGeometry._maximumClock;  const minimumCone = ellipsoidGeometry._minimumCone;  const maximumCone = ellipsoidGeometry._maximumCone;  const vertexFormat = ellipsoidGeometry._vertexFormat;  // Add an extra slice and stack so that the number of partitions is the  // number of surfaces rather than the number of joints  let slicePartitions = ellipsoidGeometry._slicePartitions + 1;  let stackPartitions = ellipsoidGeometry._stackPartitions + 1;  slicePartitions = Math.round(    (slicePartitions * Math.abs(maximumClock - minimumClock)) /      CesiumMath.TWO_PI  );  stackPartitions = Math.round(    (stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI  );  if (slicePartitions < 2) {    slicePartitions = 2;  }  if (stackPartitions < 2) {    stackPartitions = 2;  }  let i;  let j;  let index = 0;  // Create arrays for theta and phi. Duplicate first and last angle to  // allow different normals at the intersections.  const phis = [minimumCone];  const thetas = [minimumClock];  for (i = 0; i < stackPartitions; i++) {    phis.push(      minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1)    );  }  phis.push(maximumCone);  for (j = 0; j < slicePartitions; j++) {    thetas.push(      minimumClock + (j * (maximumClock - minimumClock)) / (slicePartitions - 1)    );  }  thetas.push(maximumClock);  const numPhis = phis.length;  const numThetas = thetas.length;  // Allow for extra indices if there is an inner surface and if we need  // to close the sides if the clock range is not a full circle  let extraIndices = 0;  let vertexMultiplier = 1.0;  const hasInnerSurface =    innerRadii.x !== radii.x ||    innerRadii.y !== radii.y ||    innerRadii.z !== radii.z;  let isTopOpen = false;  let isBotOpen = false;  let isClockOpen = false;  if (hasInnerSurface) {    vertexMultiplier = 2.0;    if (minimumCone > 0.0) {      isTopOpen = true;      extraIndices += slicePartitions - 1;    }    if (maximumCone < Math.PI) {      isBotOpen = true;      extraIndices += slicePartitions - 1;    }    if ((maximumClock - minimumClock) % CesiumMath.TWO_PI) {      isClockOpen = true;      extraIndices += (stackPartitions - 1) * 2 + 1;    } else {      extraIndices += 1;    }  }  const vertexCount = numThetas * numPhis * vertexMultiplier;  const positions = new Float64Array(vertexCount * 3);  const isInner = arrayFill(new Array(vertexCount), false);  const negateNormal = arrayFill(new Array(vertexCount), false);  // Multiply by 6 because there are two triangles per sector  const indexCount = slicePartitions * stackPartitions * vertexMultiplier;  const numIndices =    6 *    (indexCount +      extraIndices +      1 -      (slicePartitions + stackPartitions) * vertexMultiplier);  const indices = IndexDatatype.createTypedArray(indexCount, numIndices);  const normals = vertexFormat.normal    ? new Float32Array(vertexCount * 3)    : undefined;  const tangents = vertexFormat.tangent    ? new Float32Array(vertexCount * 3)    : undefined;  const bitangents = vertexFormat.bitangent    ? new Float32Array(vertexCount * 3)    : undefined;  const st = vertexFormat.st ? new Float32Array(vertexCount * 2) : undefined;  // Calculate sin/cos phi  const sinPhi = new Array(numPhis);  const cosPhi = new Array(numPhis);  for (i = 0; i < numPhis; i++) {    sinPhi[i] = sin(phis[i]);    cosPhi[i] = cos(phis[i]);  }  // Calculate sin/cos theta  const sinTheta = new Array(numThetas);  const cosTheta = new Array(numThetas);  for (j = 0; j < numThetas; j++) {    cosTheta[j] = cos(thetas[j]);    sinTheta[j] = sin(thetas[j]);  }  // Create outer surface  for (i = 0; i < numPhis; i++) {    for (j = 0; j < numThetas; j++) {      positions[index++] = radii.x * sinPhi[i] * cosTheta[j];      positions[index++] = radii.y * sinPhi[i] * sinTheta[j];      positions[index++] = radii.z * cosPhi[i];    }  }  // Create inner surface  let vertexIndex = vertexCount / 2.0;  if (hasInnerSurface) {    for (i = 0; i < numPhis; i++) {      for (j = 0; j < numThetas; j++) {        positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];        positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];        positions[index++] = innerRadii.z * cosPhi[i];        // Keep track of which vertices are the inner and which ones        // need the normal to be negated        isInner[vertexIndex] = true;        if (i > 0 && i !== numPhis - 1 && j !== 0 && j !== numThetas - 1) {          negateNormal[vertexIndex] = true;        }        vertexIndex++;      }    }  }  // Create indices for outer surface  index = 0;  let topOffset;  let bottomOffset;  for (i = 1; i < numPhis - 2; i++) {    topOffset = i * numThetas;    bottomOffset = (i + 1) * numThetas;    for (j = 1; j < numThetas - 2; j++) {      indices[index++] = bottomOffset + j;      indices[index++] = bottomOffset + j + 1;      indices[index++] = topOffset + j + 1;      indices[index++] = bottomOffset + j;      indices[index++] = topOffset + j + 1;      indices[index++] = topOffset + j;    }  }  // Create indices for inner surface  if (hasInnerSurface) {    const offset = numPhis * numThetas;    for (i = 1; i < numPhis - 2; i++) {      topOffset = offset + i * numThetas;      bottomOffset = offset + (i + 1) * numThetas;      for (j = 1; j < numThetas - 2; j++) {        indices[index++] = bottomOffset + j;        indices[index++] = topOffset + j;        indices[index++] = topOffset + j + 1;        indices[index++] = bottomOffset + j;        indices[index++] = topOffset + j + 1;        indices[index++] = bottomOffset + j + 1;      }    }  }  let outerOffset;  let innerOffset;  if (hasInnerSurface) {    if (isTopOpen) {      // Connect the top of the inner surface to the top of the outer surface      innerOffset = numPhis * numThetas;      for (i = 1; i < numThetas - 2; i++) {        indices[index++] = i;        indices[index++] = i + 1;        indices[index++] = innerOffset + i + 1;        indices[index++] = i;        indices[index++] = innerOffset + i + 1;        indices[index++] = innerOffset + i;      }    }    if (isBotOpen) {      // Connect the bottom of the inner surface to the bottom of the outer surface      outerOffset = numPhis * numThetas - numThetas;      innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;      for (i = 1; i < numThetas - 2; i++) {        indices[index++] = outerOffset + i + 1;        indices[index++] = outerOffset + i;        indices[index++] = innerOffset + i;        indices[index++] = outerOffset + i + 1;        indices[index++] = innerOffset + i;        indices[index++] = innerOffset + i + 1;      }    }  }  // Connect the edges if clock is not closed  if (isClockOpen) {    for (i = 1; i < numPhis - 2; i++) {      innerOffset = numThetas * numPhis + numThetas * i;      outerOffset = numThetas * i;      indices[index++] = innerOffset;      indices[index++] = outerOffset + numThetas;      indices[index++] = outerOffset;      indices[index++] = innerOffset;      indices[index++] = innerOffset + numThetas;      indices[index++] = outerOffset + numThetas;    }    for (i = 1; i < numPhis - 2; i++) {      innerOffset = numThetas * numPhis + numThetas * (i + 1) - 1;      outerOffset = numThetas * (i + 1) - 1;      indices[index++] = outerOffset + numThetas;      indices[index++] = innerOffset;      indices[index++] = outerOffset;      indices[index++] = outerOffset + numThetas;      indices[index++] = innerOffset + numThetas;      indices[index++] = innerOffset;    }  }  const attributes = new GeometryAttributes();  if (vertexFormat.position) {    attributes.position = new GeometryAttribute({      componentDatatype: ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: positions,    });  }  let stIndex = 0;  let normalIndex = 0;  let tangentIndex = 0;  let bitangentIndex = 0;  const vertexCountHalf = vertexCount / 2.0;  let ellipsoid;  const ellipsoidOuter = Ellipsoid.fromCartesian3(radii);  const ellipsoidInner = Ellipsoid.fromCartesian3(innerRadii);  if (    vertexFormat.st ||    vertexFormat.normal ||    vertexFormat.tangent ||    vertexFormat.bitangent  ) {    for (i = 0; i < vertexCount; i++) {      ellipsoid = isInner[i] ? ellipsoidInner : ellipsoidOuter;      const position = Cartesian3.fromArray(positions, i * 3, scratchPosition);      const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);      if (negateNormal[i]) {        Cartesian3.negate(normal, normal);      }      if (vertexFormat.st) {        const normalST = Cartesian2.negate(normal, scratchNormalST);        st[stIndex++] =          Math.atan2(normalST.y, normalST.x) / CesiumMath.TWO_PI + 0.5;        st[stIndex++] = Math.asin(normal.z) / Math.PI + 0.5;      }      if (vertexFormat.normal) {        normals[normalIndex++] = normal.x;        normals[normalIndex++] = normal.y;        normals[normalIndex++] = normal.z;      }      if (vertexFormat.tangent || vertexFormat.bitangent) {        const tangent = scratchTangent;        // Use UNIT_X for the poles        let tangetOffset = 0;        let unit;        if (isInner[i]) {          tangetOffset = vertexCountHalf;        }        if (          !isTopOpen &&          i >= tangetOffset &&          i < tangetOffset + numThetas * 2        ) {          unit = Cartesian3.UNIT_X;        } else {          unit = Cartesian3.UNIT_Z;        }        Cartesian3.cross(unit, normal, tangent);        Cartesian3.normalize(tangent, tangent);        if (vertexFormat.tangent) {          tangents[tangentIndex++] = tangent.x;          tangents[tangentIndex++] = tangent.y;          tangents[tangentIndex++] = tangent.z;        }        if (vertexFormat.bitangent) {          const bitangent = Cartesian3.cross(normal, tangent, scratchBitangent);          Cartesian3.normalize(bitangent, bitangent);          bitangents[bitangentIndex++] = bitangent.x;          bitangents[bitangentIndex++] = bitangent.y;          bitangents[bitangentIndex++] = bitangent.z;        }      }    }    if (vertexFormat.st) {      attributes.st = new GeometryAttribute({        componentDatatype: ComponentDatatype.FLOAT,        componentsPerAttribute: 2,        values: st,      });    }    if (vertexFormat.normal) {      attributes.normal = new GeometryAttribute({        componentDatatype: ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: normals,      });    }    if (vertexFormat.tangent) {      attributes.tangent = new GeometryAttribute({        componentDatatype: ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: tangents,      });    }    if (vertexFormat.bitangent) {      attributes.bitangent = new GeometryAttribute({        componentDatatype: ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: bitangents,      });    }  }  if (defined(ellipsoidGeometry._offsetAttribute)) {    const length = positions.length;    const applyOffset = new Uint8Array(length / 3);    const offsetValue =      ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE        ? 0        : 1;    arrayFill(applyOffset, offsetValue);    attributes.applyOffset = new GeometryAttribute({      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,      componentsPerAttribute: 1,      values: applyOffset,    });  }  return new Geometry({    attributes: attributes,    indices: indices,    primitiveType: PrimitiveType.TRIANGLES,    boundingSphere: BoundingSphere.fromEllipsoid(ellipsoidOuter),    offsetAttribute: ellipsoidGeometry._offsetAttribute,  });};let unitEllipsoidGeometry;/** * Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere. * @returns {Geometry} The computed vertices and indices. * * @private */EllipsoidGeometry.getUnitEllipsoid = function () {  if (!defined(unitEllipsoidGeometry)) {    unitEllipsoidGeometry = EllipsoidGeometry.createGeometry(      new EllipsoidGeometry({        radii: new Cartesian3(1.0, 1.0, 1.0),        vertexFormat: VertexFormat.POSITION_ONLY,      })    );  }  return unitEllipsoidGeometry;};export default EllipsoidGeometry;
 |