| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 | import arrayFill from "./arrayFill.js";import BoundingSphere from "./BoundingSphere.js";import Cartesian3 from "./Cartesian3.js";import ComponentDatatype from "./ComponentDatatype.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Ellipsoid from "./Ellipsoid.js";import Geometry from "./Geometry.js";import GeometryAttribute from "./GeometryAttribute.js";import GeometryAttributes from "./GeometryAttributes.js";import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";import IndexDatatype from "./IndexDatatype.js";import CesiumMath from "./Math.js";import PrimitiveType from "./PrimitiveType.js";const defaultRadii = new Cartesian3(1.0, 1.0, 1.0);const cos = Math.cos;const sin = Math.sin;/** * A description of the outline of an ellipsoid centered at the origin. * * @alias EllipsoidOutlineGeometry * @constructor * * @param {Object} [options] Object with the following properties: * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines). * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines). * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature. * * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one. * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero. * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero. * * @example * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({ *   radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0), *   stackPartitions: 6, *   slicePartitions: 5 * }); * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid); */function EllipsoidOutlineGeometry(options) {  options = defaultValue(options, defaultValue.EMPTY_OBJECT);  const radii = defaultValue(options.radii, defaultRadii);  const innerRadii = defaultValue(options.innerRadii, radii);  const minimumClock = defaultValue(options.minimumClock, 0.0);  const maximumClock = defaultValue(options.maximumClock, CesiumMath.TWO_PI);  const minimumCone = defaultValue(options.minimumCone, 0.0);  const maximumCone = defaultValue(options.maximumCone, CesiumMath.PI);  const stackPartitions = Math.round(defaultValue(options.stackPartitions, 10));  const slicePartitions = Math.round(defaultValue(options.slicePartitions, 8));  const subdivisions = Math.round(defaultValue(options.subdivisions, 128));  //>>includeStart('debug', pragmas.debug);  if (stackPartitions < 1) {    throw new DeveloperError("options.stackPartitions cannot be less than 1");  }  if (slicePartitions < 0) {    throw new DeveloperError("options.slicePartitions cannot be less than 0");  }  if (subdivisions < 0) {    throw new DeveloperError(      "options.subdivisions must be greater than or equal to zero."    );  }  if (    defined(options.offsetAttribute) &&    options.offsetAttribute === GeometryOffsetAttribute.TOP  ) {    throw new DeveloperError(      "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."    );  }  //>>includeEnd('debug');  this._radii = Cartesian3.clone(radii);  this._innerRadii = Cartesian3.clone(innerRadii);  this._minimumClock = minimumClock;  this._maximumClock = maximumClock;  this._minimumCone = minimumCone;  this._maximumCone = maximumCone;  this._stackPartitions = stackPartitions;  this._slicePartitions = slicePartitions;  this._subdivisions = subdivisions;  this._offsetAttribute = options.offsetAttribute;  this._workerName = "createEllipsoidOutlineGeometry";}/** * The number of elements used to pack the object into an array. * @type {Number} */EllipsoidOutlineGeometry.packedLength = 2 * Cartesian3.packedLength + 8;/** * Stores the provided instance into the provided array. * * @param {EllipsoidOutlineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required");  }  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  Cartesian3.pack(value._radii, array, startingIndex);  startingIndex += Cartesian3.packedLength;  Cartesian3.pack(value._innerRadii, array, startingIndex);  startingIndex += Cartesian3.packedLength;  array[startingIndex++] = value._minimumClock;  array[startingIndex++] = value._maximumClock;  array[startingIndex++] = value._minimumCone;  array[startingIndex++] = value._maximumCone;  array[startingIndex++] = value._stackPartitions;  array[startingIndex++] = value._slicePartitions;  array[startingIndex++] = value._subdivisions;  array[startingIndex] = defaultValue(value._offsetAttribute, -1);  return array;};const scratchRadii = new Cartesian3();const scratchInnerRadii = new Cartesian3();const scratchOptions = {  radii: scratchRadii,  innerRadii: scratchInnerRadii,  minimumClock: undefined,  maximumClock: undefined,  minimumCone: undefined,  maximumCone: undefined,  stackPartitions: undefined,  slicePartitions: undefined,  subdivisions: undefined,  offsetAttribute: undefined,};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result. * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided. */EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  const radii = Cartesian3.unpack(array, startingIndex, scratchRadii);  startingIndex += Cartesian3.packedLength;  const innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);  startingIndex += Cartesian3.packedLength;  const minimumClock = array[startingIndex++];  const maximumClock = array[startingIndex++];  const minimumCone = array[startingIndex++];  const maximumCone = array[startingIndex++];  const stackPartitions = array[startingIndex++];  const slicePartitions = array[startingIndex++];  const subdivisions = array[startingIndex++];  const offsetAttribute = array[startingIndex];  if (!defined(result)) {    scratchOptions.minimumClock = minimumClock;    scratchOptions.maximumClock = maximumClock;    scratchOptions.minimumCone = minimumCone;    scratchOptions.maximumCone = maximumCone;    scratchOptions.stackPartitions = stackPartitions;    scratchOptions.slicePartitions = slicePartitions;    scratchOptions.subdivisions = subdivisions;    scratchOptions.offsetAttribute =      offsetAttribute === -1 ? undefined : offsetAttribute;    return new EllipsoidOutlineGeometry(scratchOptions);  }  result._radii = Cartesian3.clone(radii, result._radii);  result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);  result._minimumClock = minimumClock;  result._maximumClock = maximumClock;  result._minimumCone = minimumCone;  result._maximumCone = maximumCone;  result._stackPartitions = stackPartitions;  result._slicePartitions = slicePartitions;  result._subdivisions = subdivisions;  result._offsetAttribute =    offsetAttribute === -1 ? undefined : offsetAttribute;  return result;};/** * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline. * @returns {Geometry|undefined} The computed vertices and indices. */EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {  const radii = ellipsoidGeometry._radii;  if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {    return;  }  const innerRadii = ellipsoidGeometry._innerRadii;  if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {    return;  }  const minimumClock = ellipsoidGeometry._minimumClock;  const maximumClock = ellipsoidGeometry._maximumClock;  const minimumCone = ellipsoidGeometry._minimumCone;  const maximumCone = ellipsoidGeometry._maximumCone;  const subdivisions = ellipsoidGeometry._subdivisions;  const ellipsoid = Ellipsoid.fromCartesian3(radii);  // Add an extra slice and stack to remain consistent with EllipsoidGeometry  let slicePartitions = ellipsoidGeometry._slicePartitions + 1;  let stackPartitions = ellipsoidGeometry._stackPartitions + 1;  slicePartitions = Math.round(    (slicePartitions * Math.abs(maximumClock - minimumClock)) /      CesiumMath.TWO_PI  );  stackPartitions = Math.round(    (stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI  );  if (slicePartitions < 2) {    slicePartitions = 2;  }  if (stackPartitions < 2) {    stackPartitions = 2;  }  let extraIndices = 0;  let vertexMultiplier = 1.0;  const hasInnerSurface =    innerRadii.x !== radii.x ||    innerRadii.y !== radii.y ||    innerRadii.z !== radii.z;  let isTopOpen = false;  let isBotOpen = false;  if (hasInnerSurface) {    vertexMultiplier = 2.0;    // Add 2x slicePartitions to connect the top/bottom of the outer to    // the top/bottom of the inner    if (minimumCone > 0.0) {      isTopOpen = true;      extraIndices += slicePartitions;    }    if (maximumCone < Math.PI) {      isBotOpen = true;      extraIndices += slicePartitions;    }  }  const vertexCount =    subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);  const positions = new Float64Array(vertexCount * 3);  // Multiply by two because two points define each line segment  const numIndices =    2 *    (vertexCount +      extraIndices -      (slicePartitions + stackPartitions) * vertexMultiplier);  const indices = IndexDatatype.createTypedArray(vertexCount, numIndices);  let i;  let j;  let theta;  let phi;  let index = 0;  // Calculate sin/cos phi  const sinPhi = new Array(stackPartitions);  const cosPhi = new Array(stackPartitions);  for (i = 0; i < stackPartitions; i++) {    phi =      minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);    sinPhi[i] = sin(phi);    cosPhi[i] = cos(phi);  }  // Calculate sin/cos theta  const sinTheta = new Array(subdivisions);  const cosTheta = new Array(subdivisions);  for (i = 0; i < subdivisions; i++) {    theta =      minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);    sinTheta[i] = sin(theta);    cosTheta[i] = cos(theta);  }  // Calculate the latitude lines on the outer surface  for (i = 0; i < stackPartitions; i++) {    for (j = 0; j < subdivisions; j++) {      positions[index++] = radii.x * sinPhi[i] * cosTheta[j];      positions[index++] = radii.y * sinPhi[i] * sinTheta[j];      positions[index++] = radii.z * cosPhi[i];    }  }  // Calculate the latitude lines on the inner surface  if (hasInnerSurface) {    for (i = 0; i < stackPartitions; i++) {      for (j = 0; j < subdivisions; j++) {        positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];        positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];        positions[index++] = innerRadii.z * cosPhi[i];      }    }  }  // Calculate sin/cos phi  sinPhi.length = subdivisions;  cosPhi.length = subdivisions;  for (i = 0; i < subdivisions; i++) {    phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);    sinPhi[i] = sin(phi);    cosPhi[i] = cos(phi);  }  // Calculate sin/cos theta for each slice partition  sinTheta.length = slicePartitions;  cosTheta.length = slicePartitions;  for (i = 0; i < slicePartitions; i++) {    theta =      minimumClock +      (i * (maximumClock - minimumClock)) / (slicePartitions - 1);    sinTheta[i] = sin(theta);    cosTheta[i] = cos(theta);  }  // Calculate the longitude lines on the outer surface  for (i = 0; i < subdivisions; i++) {    for (j = 0; j < slicePartitions; j++) {      positions[index++] = radii.x * sinPhi[i] * cosTheta[j];      positions[index++] = radii.y * sinPhi[i] * sinTheta[j];      positions[index++] = radii.z * cosPhi[i];    }  }  // Calculate the longitude lines on the inner surface  if (hasInnerSurface) {    for (i = 0; i < subdivisions; i++) {      for (j = 0; j < slicePartitions; j++) {        positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];        positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];        positions[index++] = innerRadii.z * cosPhi[i];      }    }  }  // Create indices for the latitude lines  index = 0;  for (i = 0; i < stackPartitions * vertexMultiplier; i++) {    const topOffset = i * subdivisions;    for (j = 0; j < subdivisions - 1; j++) {      indices[index++] = topOffset + j;      indices[index++] = topOffset + j + 1;    }  }  // Create indices for the outer longitude lines  let offset = stackPartitions * subdivisions * vertexMultiplier;  for (i = 0; i < slicePartitions; i++) {    for (j = 0; j < subdivisions - 1; j++) {      indices[index++] = offset + i + j * slicePartitions;      indices[index++] = offset + i + (j + 1) * slicePartitions;    }  }  // Create indices for the inner longitude lines  if (hasInnerSurface) {    offset =      stackPartitions * subdivisions * vertexMultiplier +      slicePartitions * subdivisions;    for (i = 0; i < slicePartitions; i++) {      for (j = 0; j < subdivisions - 1; j++) {        indices[index++] = offset + i + j * slicePartitions;        indices[index++] = offset + i + (j + 1) * slicePartitions;      }    }  }  if (hasInnerSurface) {    let outerOffset = stackPartitions * subdivisions * vertexMultiplier;    let innerOffset = outerOffset + subdivisions * slicePartitions;    if (isTopOpen) {      // Draw lines from the top of the inner surface to the top of the outer surface      for (i = 0; i < slicePartitions; i++) {        indices[index++] = outerOffset + i;        indices[index++] = innerOffset + i;      }    }    if (isBotOpen) {      // Draw lines from the top of the inner surface to the top of the outer surface      outerOffset += subdivisions * slicePartitions - slicePartitions;      innerOffset += subdivisions * slicePartitions - slicePartitions;      for (i = 0; i < slicePartitions; i++) {        indices[index++] = outerOffset + i;        indices[index++] = innerOffset + i;      }    }  }  const attributes = new GeometryAttributes({    position: new GeometryAttribute({      componentDatatype: ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: positions,    }),  });  if (defined(ellipsoidGeometry._offsetAttribute)) {    const length = positions.length;    const applyOffset = new Uint8Array(length / 3);    const offsetValue =      ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE        ? 0        : 1;    arrayFill(applyOffset, offsetValue);    attributes.applyOffset = new GeometryAttribute({      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,      componentsPerAttribute: 1,      values: applyOffset,    });  }  return new Geometry({    attributes: attributes,    indices: indices,    primitiveType: PrimitiveType.LINES,    boundingSphere: BoundingSphere.fromEllipsoid(ellipsoid),    offsetAttribute: ellipsoidGeometry._offsetAttribute,  });};export default EllipsoidOutlineGeometry;
 |