| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047 | import Cartesian3 from "./Cartesian3.js";import Cartographic from "./Cartographic.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Interval from "./Interval.js";import CesiumMath from "./Math.js";import Matrix3 from "./Matrix3.js";import QuadraticRealPolynomial from "./QuadraticRealPolynomial.js";import QuarticRealPolynomial from "./QuarticRealPolynomial.js";import Ray from "./Ray.js";/** * Functions for computing the intersection between geometries such as rays, planes, triangles, and ellipsoids. * * @namespace IntersectionTests */const IntersectionTests = {};/** * Computes the intersection of a ray and a plane. * * @param {Ray} ray The ray. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */IntersectionTests.rayPlane = function (ray, plane, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(ray)) {    throw new DeveloperError("ray is required.");  }  if (!defined(plane)) {    throw new DeveloperError("plane is required.");  }  //>>includeEnd('debug');  if (!defined(result)) {    result = new Cartesian3();  }  const origin = ray.origin;  const direction = ray.direction;  const normal = plane.normal;  const denominator = Cartesian3.dot(normal, direction);  if (Math.abs(denominator) < CesiumMath.EPSILON15) {    // Ray is parallel to plane.  The ray may be in the polygon's plane.    return undefined;  }  const t = (-plane.distance - Cartesian3.dot(normal, origin)) / denominator;  if (t < 0) {    return undefined;  }  result = Cartesian3.multiplyByScalar(direction, t, result);  return Cartesian3.add(origin, result, result);};const scratchEdge0 = new Cartesian3();const scratchEdge1 = new Cartesian3();const scratchPVec = new Cartesian3();const scratchTVec = new Cartesian3();const scratchQVec = new Cartesian3();/** * Computes the intersection of a ray and a triangle as a parametric distance along the input ray. The result is negative when the triangle is behind the ray. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle *                  and return undefined for intersections with the back face. * @returns {Number} The intersection as a parametric distance along the ray, or undefined if there is no intersection. */IntersectionTests.rayTriangleParametric = function (  ray,  p0,  p1,  p2,  cullBackFaces) {  //>>includeStart('debug', pragmas.debug);  if (!defined(ray)) {    throw new DeveloperError("ray is required.");  }  if (!defined(p0)) {    throw new DeveloperError("p0 is required.");  }  if (!defined(p1)) {    throw new DeveloperError("p1 is required.");  }  if (!defined(p2)) {    throw new DeveloperError("p2 is required.");  }  //>>includeEnd('debug');  cullBackFaces = defaultValue(cullBackFaces, false);  const origin = ray.origin;  const direction = ray.direction;  const edge0 = Cartesian3.subtract(p1, p0, scratchEdge0);  const edge1 = Cartesian3.subtract(p2, p0, scratchEdge1);  const p = Cartesian3.cross(direction, edge1, scratchPVec);  const det = Cartesian3.dot(edge0, p);  let tvec;  let q;  let u;  let v;  let t;  if (cullBackFaces) {    if (det < CesiumMath.EPSILON6) {      return undefined;    }    tvec = Cartesian3.subtract(origin, p0, scratchTVec);    u = Cartesian3.dot(tvec, p);    if (u < 0.0 || u > det) {      return undefined;    }    q = Cartesian3.cross(tvec, edge0, scratchQVec);    v = Cartesian3.dot(direction, q);    if (v < 0.0 || u + v > det) {      return undefined;    }    t = Cartesian3.dot(edge1, q) / det;  } else {    if (Math.abs(det) < CesiumMath.EPSILON6) {      return undefined;    }    const invDet = 1.0 / det;    tvec = Cartesian3.subtract(origin, p0, scratchTVec);    u = Cartesian3.dot(tvec, p) * invDet;    if (u < 0.0 || u > 1.0) {      return undefined;    }    q = Cartesian3.cross(tvec, edge0, scratchQVec);    v = Cartesian3.dot(direction, q) * invDet;    if (v < 0.0 || u + v > 1.0) {      return undefined;    }    t = Cartesian3.dot(edge1, q) * invDet;  }  return t;};/** * Computes the intersection of a ray and a triangle as a Cartesian3 coordinate. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle *                  and return undefined for intersections with the back face. * @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */IntersectionTests.rayTriangle = function (  ray,  p0,  p1,  p2,  cullBackFaces,  result) {  const t = IntersectionTests.rayTriangleParametric(    ray,    p0,    p1,    p2,    cullBackFaces  );  if (!defined(t) || t < 0.0) {    return undefined;  }  if (!defined(result)) {    result = new Cartesian3();  }  Cartesian3.multiplyByScalar(ray.direction, t, result);  return Cartesian3.add(ray.origin, result, result);};const scratchLineSegmentTriangleRay = new Ray();/** * Computes the intersection of a line segment and a triangle. * @memberof IntersectionTests * * @param {Cartesian3} v0 The an end point of the line segment. * @param {Cartesian3} v1 The other end point of the line segment. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle *                  and return undefined for intersections with the back face. * @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */IntersectionTests.lineSegmentTriangle = function (  v0,  v1,  p0,  p1,  p2,  cullBackFaces,  result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(v0)) {    throw new DeveloperError("v0 is required.");  }  if (!defined(v1)) {    throw new DeveloperError("v1 is required.");  }  if (!defined(p0)) {    throw new DeveloperError("p0 is required.");  }  if (!defined(p1)) {    throw new DeveloperError("p1 is required.");  }  if (!defined(p2)) {    throw new DeveloperError("p2 is required.");  }  //>>includeEnd('debug');  const ray = scratchLineSegmentTriangleRay;  Cartesian3.clone(v0, ray.origin);  Cartesian3.subtract(v1, v0, ray.direction);  Cartesian3.normalize(ray.direction, ray.direction);  const t = IntersectionTests.rayTriangleParametric(    ray,    p0,    p1,    p2,    cullBackFaces  );  if (!defined(t) || t < 0.0 || t > Cartesian3.distance(v0, v1)) {    return undefined;  }  if (!defined(result)) {    result = new Cartesian3();  }  Cartesian3.multiplyByScalar(ray.direction, t, result);  return Cartesian3.add(ray.origin, result, result);};function solveQuadratic(a, b, c, result) {  const det = b * b - 4.0 * a * c;  if (det < 0.0) {    return undefined;  } else if (det > 0.0) {    const denom = 1.0 / (2.0 * a);    const disc = Math.sqrt(det);    const root0 = (-b + disc) * denom;    const root1 = (-b - disc) * denom;    if (root0 < root1) {      result.root0 = root0;      result.root1 = root1;    } else {      result.root0 = root1;      result.root1 = root0;    }    return result;  }  const root = -b / (2.0 * a);  if (root === 0.0) {    return undefined;  }  result.root0 = result.root1 = root;  return result;}const raySphereRoots = {  root0: 0.0,  root1: 0.0,};function raySphere(ray, sphere, result) {  if (!defined(result)) {    result = new Interval();  }  const origin = ray.origin;  const direction = ray.direction;  const center = sphere.center;  const radiusSquared = sphere.radius * sphere.radius;  const diff = Cartesian3.subtract(origin, center, scratchPVec);  const a = Cartesian3.dot(direction, direction);  const b = 2.0 * Cartesian3.dot(direction, diff);  const c = Cartesian3.magnitudeSquared(diff) - radiusSquared;  const roots = solveQuadratic(a, b, c, raySphereRoots);  if (!defined(roots)) {    return undefined;  }  result.start = roots.root0;  result.stop = roots.root1;  return result;}/** * Computes the intersection points of a ray with a sphere. * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */IntersectionTests.raySphere = function (ray, sphere, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(ray)) {    throw new DeveloperError("ray is required.");  }  if (!defined(sphere)) {    throw new DeveloperError("sphere is required.");  }  //>>includeEnd('debug');  result = raySphere(ray, sphere, result);  if (!defined(result) || result.stop < 0.0) {    return undefined;  }  result.start = Math.max(result.start, 0.0);  return result;};const scratchLineSegmentRay = new Ray();/** * Computes the intersection points of a line segment with a sphere. * @memberof IntersectionTests * * @param {Cartesian3} p0 An end point of the line segment. * @param {Cartesian3} p1 The other end point of the line segment. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */IntersectionTests.lineSegmentSphere = function (p0, p1, sphere, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(p0)) {    throw new DeveloperError("p0 is required.");  }  if (!defined(p1)) {    throw new DeveloperError("p1 is required.");  }  if (!defined(sphere)) {    throw new DeveloperError("sphere is required.");  }  //>>includeEnd('debug');  const ray = scratchLineSegmentRay;  Cartesian3.clone(p0, ray.origin);  const direction = Cartesian3.subtract(p1, p0, ray.direction);  const maxT = Cartesian3.magnitude(direction);  Cartesian3.normalize(direction, direction);  result = raySphere(ray, sphere, result);  if (!defined(result) || result.stop < 0.0 || result.start > maxT) {    return undefined;  }  result.start = Math.max(result.start, 0.0);  result.stop = Math.min(result.stop, maxT);  return result;};const scratchQ = new Cartesian3();const scratchW = new Cartesian3();/** * Computes the intersection points of a ray with an ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */IntersectionTests.rayEllipsoid = function (ray, ellipsoid) {  //>>includeStart('debug', pragmas.debug);  if (!defined(ray)) {    throw new DeveloperError("ray is required.");  }  if (!defined(ellipsoid)) {    throw new DeveloperError("ellipsoid is required.");  }  //>>includeEnd('debug');  const inverseRadii = ellipsoid.oneOverRadii;  const q = Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ);  const w = Cartesian3.multiplyComponents(    inverseRadii,    ray.direction,    scratchW  );  const q2 = Cartesian3.magnitudeSquared(q);  const qw = Cartesian3.dot(q, w);  let difference, w2, product, discriminant, temp;  if (q2 > 1.0) {    // Outside ellipsoid.    if (qw >= 0.0) {      // Looking outward or tangent (0 intersections).      return undefined;    }    // qw < 0.0.    const qw2 = qw * qw;    difference = q2 - 1.0; // Positively valued.    w2 = Cartesian3.magnitudeSquared(w);    product = w2 * difference;    if (qw2 < product) {      // Imaginary roots (0 intersections).      return undefined;    } else if (qw2 > product) {      // Distinct roots (2 intersections).      discriminant = qw * qw - product;      temp = -qw + Math.sqrt(discriminant); // Avoid cancellation.      const root0 = temp / w2;      const root1 = difference / temp;      if (root0 < root1) {        return new Interval(root0, root1);      }      return {        start: root1,        stop: root0,      };    }    // qw2 == product.  Repeated roots (2 intersections).    const root = Math.sqrt(difference / w2);    return new Interval(root, root);  } else if (q2 < 1.0) {    // Inside ellipsoid (2 intersections).    difference = q2 - 1.0; // Negatively valued.    w2 = Cartesian3.magnitudeSquared(w);    product = w2 * difference; // Negatively valued.    discriminant = qw * qw - product;    temp = -qw + Math.sqrt(discriminant); // Positively valued.    return new Interval(0.0, temp / w2);  }  // q2 == 1.0. On ellipsoid.  if (qw < 0.0) {    // Looking inward.    w2 = Cartesian3.magnitudeSquared(w);    return new Interval(0.0, -qw / w2);  }  // qw >= 0.0.  Looking outward or tangent.  return undefined;};function addWithCancellationCheck(left, right, tolerance) {  const difference = left + right;  if (    CesiumMath.sign(left) !== CesiumMath.sign(right) &&    Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance  ) {    return 0.0;  }  return difference;}function quadraticVectorExpression(A, b, c, x, w) {  const xSquared = x * x;  const wSquared = w * w;  const l2 = (A[Matrix3.COLUMN1ROW1] - A[Matrix3.COLUMN2ROW2]) * wSquared;  const l1 =    w *    (x *      addWithCancellationCheck(        A[Matrix3.COLUMN1ROW0],        A[Matrix3.COLUMN0ROW1],        CesiumMath.EPSILON15      ) +      b.y);  const l0 =    A[Matrix3.COLUMN0ROW0] * xSquared +    A[Matrix3.COLUMN2ROW2] * wSquared +    x * b.x +    c;  const r1 =    wSquared *    addWithCancellationCheck(      A[Matrix3.COLUMN2ROW1],      A[Matrix3.COLUMN1ROW2],      CesiumMath.EPSILON15    );  const r0 =    w *    (x *      addWithCancellationCheck(A[Matrix3.COLUMN2ROW0], A[Matrix3.COLUMN0ROW2]) +      b.z);  let cosines;  const solutions = [];  if (r0 === 0.0 && r1 === 0.0) {    cosines = QuadraticRealPolynomial.computeRealRoots(l2, l1, l0);    if (cosines.length === 0) {      return solutions;    }    const cosine0 = cosines[0];    const sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0));    solutions.push(new Cartesian3(x, w * cosine0, w * -sine0));    solutions.push(new Cartesian3(x, w * cosine0, w * sine0));    if (cosines.length === 2) {      const cosine1 = cosines[1];      const sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0));      solutions.push(new Cartesian3(x, w * cosine1, w * -sine1));      solutions.push(new Cartesian3(x, w * cosine1, w * sine1));    }    return solutions;  }  const r0Squared = r0 * r0;  const r1Squared = r1 * r1;  const l2Squared = l2 * l2;  const r0r1 = r0 * r1;  const c4 = l2Squared + r1Squared;  const c3 = 2.0 * (l1 * l2 + r0r1);  const c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared;  const c1 = 2.0 * (l0 * l1 - r0r1);  const c0 = l0 * l0 - r0Squared;  if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) {    return solutions;  }  cosines = QuarticRealPolynomial.computeRealRoots(c4, c3, c2, c1, c0);  const length = cosines.length;  if (length === 0) {    return solutions;  }  for (let i = 0; i < length; ++i) {    const cosine = cosines[i];    const cosineSquared = cosine * cosine;    const sineSquared = Math.max(1.0 - cosineSquared, 0.0);    const sine = Math.sqrt(sineSquared);    //const left = l2 * cosineSquared + l1 * cosine + l0;    let left;    if (CesiumMath.sign(l2) === CesiumMath.sign(l0)) {      left = addWithCancellationCheck(        l2 * cosineSquared + l0,        l1 * cosine,        CesiumMath.EPSILON12      );    } else if (CesiumMath.sign(l0) === CesiumMath.sign(l1 * cosine)) {      left = addWithCancellationCheck(        l2 * cosineSquared,        l1 * cosine + l0,        CesiumMath.EPSILON12      );    } else {      left = addWithCancellationCheck(        l2 * cosineSquared + l1 * cosine,        l0,        CesiumMath.EPSILON12      );    }    const right = addWithCancellationCheck(      r1 * cosine,      r0,      CesiumMath.EPSILON15    );    const product = left * right;    if (product < 0.0) {      solutions.push(new Cartesian3(x, w * cosine, w * sine));    } else if (product > 0.0) {      solutions.push(new Cartesian3(x, w * cosine, w * -sine));    } else if (sine !== 0.0) {      solutions.push(new Cartesian3(x, w * cosine, w * -sine));      solutions.push(new Cartesian3(x, w * cosine, w * sine));      ++i;    } else {      solutions.push(new Cartesian3(x, w * cosine, w * sine));    }  }  return solutions;}const firstAxisScratch = new Cartesian3();const secondAxisScratch = new Cartesian3();const thirdAxisScratch = new Cartesian3();const referenceScratch = new Cartesian3();const bCart = new Cartesian3();const bScratch = new Matrix3();const btScratch = new Matrix3();const diScratch = new Matrix3();const dScratch = new Matrix3();const cScratch = new Matrix3();const tempMatrix = new Matrix3();const aScratch = new Matrix3();const sScratch = new Cartesian3();const closestScratch = new Cartesian3();const surfPointScratch = new Cartographic();/** * Provides the point along the ray which is nearest to the ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Cartesian3} The nearest planetodetic point on the ray. */IntersectionTests.grazingAltitudeLocation = function (ray, ellipsoid) {  //>>includeStart('debug', pragmas.debug);  if (!defined(ray)) {    throw new DeveloperError("ray is required.");  }  if (!defined(ellipsoid)) {    throw new DeveloperError("ellipsoid is required.");  }  //>>includeEnd('debug');  const position = ray.origin;  const direction = ray.direction;  if (!Cartesian3.equals(position, Cartesian3.ZERO)) {    const normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch);    if (Cartesian3.dot(direction, normal) >= 0.0) {      // The location provided is the closest point in altitude      return position;    }  }  const intersects = defined(this.rayEllipsoid(ray, ellipsoid));  // Compute the scaled direction vector.  const f = ellipsoid.transformPositionToScaledSpace(    direction,    firstAxisScratch  );  // Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose.  const firstAxis = Cartesian3.normalize(f, f);  const reference = Cartesian3.mostOrthogonalAxis(f, referenceScratch);  const secondAxis = Cartesian3.normalize(    Cartesian3.cross(reference, firstAxis, secondAxisScratch),    secondAxisScratch  );  const thirdAxis = Cartesian3.normalize(    Cartesian3.cross(firstAxis, secondAxis, thirdAxisScratch),    thirdAxisScratch  );  const B = bScratch;  B[0] = firstAxis.x;  B[1] = firstAxis.y;  B[2] = firstAxis.z;  B[3] = secondAxis.x;  B[4] = secondAxis.y;  B[5] = secondAxis.z;  B[6] = thirdAxis.x;  B[7] = thirdAxis.y;  B[8] = thirdAxis.z;  const B_T = Matrix3.transpose(B, btScratch);  // Get the scaling matrix and its inverse.  const D_I = Matrix3.fromScale(ellipsoid.radii, diScratch);  const D = Matrix3.fromScale(ellipsoid.oneOverRadii, dScratch);  const C = cScratch;  C[0] = 0.0;  C[1] = -direction.z;  C[2] = direction.y;  C[3] = direction.z;  C[4] = 0.0;  C[5] = -direction.x;  C[6] = -direction.y;  C[7] = direction.x;  C[8] = 0.0;  const temp = Matrix3.multiply(    Matrix3.multiply(B_T, D, tempMatrix),    C,    tempMatrix  );  const A = Matrix3.multiply(    Matrix3.multiply(temp, D_I, aScratch),    B,    aScratch  );  const b = Matrix3.multiplyByVector(temp, position, bCart);  // Solve for the solutions to the expression in standard form:  const solutions = quadraticVectorExpression(    A,    Cartesian3.negate(b, firstAxisScratch),    0.0,    0.0,    1.0  );  let s;  let altitude;  const length = solutions.length;  if (length > 0) {    let closest = Cartesian3.clone(Cartesian3.ZERO, closestScratch);    let maximumValue = Number.NEGATIVE_INFINITY;    for (let i = 0; i < length; ++i) {      s = Matrix3.multiplyByVector(        D_I,        Matrix3.multiplyByVector(B, solutions[i], sScratch),        sScratch      );      const v = Cartesian3.normalize(        Cartesian3.subtract(s, position, referenceScratch),        referenceScratch      );      const dotProduct = Cartesian3.dot(v, direction);      if (dotProduct > maximumValue) {        maximumValue = dotProduct;        closest = Cartesian3.clone(s, closest);      }    }    const surfacePoint = ellipsoid.cartesianToCartographic(      closest,      surfPointScratch    );    maximumValue = CesiumMath.clamp(maximumValue, 0.0, 1.0);    altitude =      Cartesian3.magnitude(        Cartesian3.subtract(closest, position, referenceScratch)      ) * Math.sqrt(1.0 - maximumValue * maximumValue);    altitude = intersects ? -altitude : altitude;    surfacePoint.height = altitude;    return ellipsoid.cartographicToCartesian(surfacePoint, new Cartesian3());  }  return undefined;};const lineSegmentPlaneDifference = new Cartesian3();/** * Computes the intersection of a line segment and a plane. * * @param {Cartesian3} endPoint0 An end point of the line segment. * @param {Cartesian3} endPoint1 The other end point of the line segment. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersection. * * @example * const origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * const normal = ellipsoid.geodeticSurfaceNormal(origin); * const plane = Cesium.Plane.fromPointNormal(origin, normal); * * const p0 = new Cesium.Cartesian3(...); * const p1 = new Cesium.Cartesian3(...); * * // find the intersection of the line segment from p0 to p1 and the tangent plane at origin. * const intersection = Cesium.IntersectionTests.lineSegmentPlane(p0, p1, plane); */IntersectionTests.lineSegmentPlane = function (  endPoint0,  endPoint1,  plane,  result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(endPoint0)) {    throw new DeveloperError("endPoint0 is required.");  }  if (!defined(endPoint1)) {    throw new DeveloperError("endPoint1 is required.");  }  if (!defined(plane)) {    throw new DeveloperError("plane is required.");  }  //>>includeEnd('debug');  if (!defined(result)) {    result = new Cartesian3();  }  const difference = Cartesian3.subtract(    endPoint1,    endPoint0,    lineSegmentPlaneDifference  );  const normal = plane.normal;  const nDotDiff = Cartesian3.dot(normal, difference);  // check if the segment and plane are parallel  if (Math.abs(nDotDiff) < CesiumMath.EPSILON6) {    return undefined;  }  const nDotP0 = Cartesian3.dot(normal, endPoint0);  const t = -(plane.distance + nDotP0) / nDotDiff;  // intersection only if t is in [0, 1]  if (t < 0.0 || t > 1.0) {    return undefined;  }  // intersection is endPoint0 + t * (endPoint1 - endPoint0)  Cartesian3.multiplyByScalar(difference, t, result);  Cartesian3.add(endPoint0, result, result);  return result;};/** * Computes the intersection of a triangle and a plane * * @param {Cartesian3} p0 First point of the triangle * @param {Cartesian3} p1 Second point of the triangle * @param {Cartesian3} p2 Third point of the triangle * @param {Plane} plane Intersection plane * @returns {Object} An object with properties <code>positions</code> and <code>indices</code>, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists) * * @example * const origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * const normal = ellipsoid.geodeticSurfaceNormal(origin); * const plane = Cesium.Plane.fromPointNormal(origin, normal); * * const p0 = new Cesium.Cartesian3(...); * const p1 = new Cesium.Cartesian3(...); * const p2 = new Cesium.Cartesian3(...); * * // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane * const triangles = Cesium.IntersectionTests.trianglePlaneIntersection(p0, p1, p2, plane); */IntersectionTests.trianglePlaneIntersection = function (p0, p1, p2, plane) {  //>>includeStart('debug', pragmas.debug);  if (!defined(p0) || !defined(p1) || !defined(p2) || !defined(plane)) {    throw new DeveloperError("p0, p1, p2, and plane are required.");  }  //>>includeEnd('debug');  const planeNormal = plane.normal;  const planeD = plane.distance;  const p0Behind = Cartesian3.dot(planeNormal, p0) + planeD < 0.0;  const p1Behind = Cartesian3.dot(planeNormal, p1) + planeD < 0.0;  const p2Behind = Cartesian3.dot(planeNormal, p2) + planeD < 0.0;  // Given these dots products, the calls to lineSegmentPlaneIntersection  // always have defined results.  let numBehind = 0;  numBehind += p0Behind ? 1 : 0;  numBehind += p1Behind ? 1 : 0;  numBehind += p2Behind ? 1 : 0;  let u1, u2;  if (numBehind === 1 || numBehind === 2) {    u1 = new Cartesian3();    u2 = new Cartesian3();  }  if (numBehind === 1) {    if (p0Behind) {      IntersectionTests.lineSegmentPlane(p0, p1, plane, u1);      IntersectionTests.lineSegmentPlane(p0, p2, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          0,          3,          4,          // In front          1,          2,          4,          1,          4,          3,        ],      };    } else if (p1Behind) {      IntersectionTests.lineSegmentPlane(p1, p2, plane, u1);      IntersectionTests.lineSegmentPlane(p1, p0, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          1,          3,          4,          // In front          2,          0,          4,          2,          4,          3,        ],      };    } else if (p2Behind) {      IntersectionTests.lineSegmentPlane(p2, p0, plane, u1);      IntersectionTests.lineSegmentPlane(p2, p1, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          2,          3,          4,          // In front          0,          1,          4,          0,          4,          3,        ],      };    }  } else if (numBehind === 2) {    if (!p0Behind) {      IntersectionTests.lineSegmentPlane(p1, p0, plane, u1);      IntersectionTests.lineSegmentPlane(p2, p0, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          1,          2,          4,          1,          4,          3,          // In front          0,          3,          4,        ],      };    } else if (!p1Behind) {      IntersectionTests.lineSegmentPlane(p2, p1, plane, u1);      IntersectionTests.lineSegmentPlane(p0, p1, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          2,          0,          4,          2,          4,          3,          // In front          1,          3,          4,        ],      };    } else if (!p2Behind) {      IntersectionTests.lineSegmentPlane(p0, p2, plane, u1);      IntersectionTests.lineSegmentPlane(p1, p2, plane, u2);      return {        positions: [p0, p1, p2, u1, u2],        indices: [          // Behind          0,          1,          4,          0,          4,          3,          // In front          2,          3,          4,        ],      };    }  }  // if numBehind is 3, the triangle is completely behind the plane;  // otherwise, it is completely in front (numBehind is 0).  return undefined;};export default IntersectionTests;
 |