| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119 | import MersenneTwister from "../ThirdParty/mersenne-twister.js";import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";/** * Math functions. * * @exports CesiumMath * @alias Math */const CesiumMath = {};/** * 0.1 * @type {Number} * @constant */CesiumMath.EPSILON1 = 0.1;/** * 0.01 * @type {Number} * @constant */CesiumMath.EPSILON2 = 0.01;/** * 0.001 * @type {Number} * @constant */CesiumMath.EPSILON3 = 0.001;/** * 0.0001 * @type {Number} * @constant */CesiumMath.EPSILON4 = 0.0001;/** * 0.00001 * @type {Number} * @constant */CesiumMath.EPSILON5 = 0.00001;/** * 0.000001 * @type {Number} * @constant */CesiumMath.EPSILON6 = 0.000001;/** * 0.0000001 * @type {Number} * @constant */CesiumMath.EPSILON7 = 0.0000001;/** * 0.00000001 * @type {Number} * @constant */CesiumMath.EPSILON8 = 0.00000001;/** * 0.000000001 * @type {Number} * @constant */CesiumMath.EPSILON9 = 0.000000001;/** * 0.0000000001 * @type {Number} * @constant */CesiumMath.EPSILON10 = 0.0000000001;/** * 0.00000000001 * @type {Number} * @constant */CesiumMath.EPSILON11 = 0.00000000001;/** * 0.000000000001 * @type {Number} * @constant */CesiumMath.EPSILON12 = 0.000000000001;/** * 0.0000000000001 * @type {Number} * @constant */CesiumMath.EPSILON13 = 0.0000000000001;/** * 0.00000000000001 * @type {Number} * @constant */CesiumMath.EPSILON14 = 0.00000000000001;/** * 0.000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON15 = 0.000000000000001;/** * 0.0000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON16 = 0.0000000000000001;/** * 0.00000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON17 = 0.00000000000000001;/** * 0.000000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON18 = 0.000000000000000001;/** * 0.0000000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON19 = 0.0000000000000000001;/** * 0.00000000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON20 = 0.00000000000000000001;/** * 0.000000000000000000001 * @type {Number} * @constant */CesiumMath.EPSILON21 = 0.000000000000000000001;/** * The gravitational parameter of the Earth in meters cubed * per second squared as defined by the WGS84 model: 3.986004418e14 * @type {Number} * @constant */CesiumMath.GRAVITATIONALPARAMETER = 3.986004418e14;/** * Radius of the sun in meters: 6.955e8 * @type {Number} * @constant */CesiumMath.SOLAR_RADIUS = 6.955e8;/** * The mean radius of the moon, according to the "Report of the IAU/IAG Working Group on * Cartographic Coordinates and Rotational Elements of the Planets and satellites: 2000", * Celestial Mechanics 82: 83-110, 2002. * @type {Number} * @constant */CesiumMath.LUNAR_RADIUS = 1737400.0;/** * 64 * 1024 * @type {Number} * @constant */CesiumMath.SIXTY_FOUR_KILOBYTES = 64 * 1024;/** * 4 * 1024 * 1024 * 1024 * @type {Number} * @constant */CesiumMath.FOUR_GIGABYTES = 4 * 1024 * 1024 * 1024;/** * Returns the sign of the value; 1 if the value is positive, -1 if the value is * negative, or 0 if the value is 0. * * @function * @param {Number} value The value to return the sign of. * @returns {Number} The sign of value. */// eslint-disable-next-line es/no-math-signCesiumMath.sign = defaultValue(Math.sign, function sign(value) {  value = +value; // coerce to number  if (value === 0 || value !== value) {    // zero or NaN    return value;  }  return value > 0 ? 1 : -1;});/** * Returns 1.0 if the given value is positive or zero, and -1.0 if it is negative. * This is similar to {@link CesiumMath#sign} except that returns 1.0 instead of * 0.0 when the input value is 0.0. * @param {Number} value The value to return the sign of. * @returns {Number} The sign of value. */CesiumMath.signNotZero = function (value) {  return value < 0.0 ? -1.0 : 1.0;};/** * Converts a scalar value in the range [-1.0, 1.0] to a SNORM in the range [0, rangeMaximum] * @param {Number} value The scalar value in the range [-1.0, 1.0] * @param {Number} [rangeMaximum=255] The maximum value in the mapped range, 255 by default. * @returns {Number} A SNORM value, where 0 maps to -1.0 and rangeMaximum maps to 1.0. * * @see CesiumMath.fromSNorm */CesiumMath.toSNorm = function (value, rangeMaximum) {  rangeMaximum = defaultValue(rangeMaximum, 255);  return Math.round(    (CesiumMath.clamp(value, -1.0, 1.0) * 0.5 + 0.5) * rangeMaximum  );};/** * Converts a SNORM value in the range [0, rangeMaximum] to a scalar in the range [-1.0, 1.0]. * @param {Number} value SNORM value in the range [0, rangeMaximum] * @param {Number} [rangeMaximum=255] The maximum value in the SNORM range, 255 by default. * @returns {Number} Scalar in the range [-1.0, 1.0]. * * @see CesiumMath.toSNorm */CesiumMath.fromSNorm = function (value, rangeMaximum) {  rangeMaximum = defaultValue(rangeMaximum, 255);  return (    (CesiumMath.clamp(value, 0.0, rangeMaximum) / rangeMaximum) * 2.0 - 1.0  );};/** * Converts a scalar value in the range [rangeMinimum, rangeMaximum] to a scalar in the range [0.0, 1.0] * @param {Number} value The scalar value in the range [rangeMinimum, rangeMaximum] * @param {Number} rangeMinimum The minimum value in the mapped range. * @param {Number} rangeMaximum The maximum value in the mapped range. * @returns {Number} A scalar value, where rangeMinimum maps to 0.0 and rangeMaximum maps to 1.0. */CesiumMath.normalize = function (value, rangeMinimum, rangeMaximum) {  rangeMaximum = Math.max(rangeMaximum - rangeMinimum, 0.0);  return rangeMaximum === 0.0    ? 0.0    : CesiumMath.clamp((value - rangeMinimum) / rangeMaximum, 0.0, 1.0);};/** * Returns the hyperbolic sine of a number. * The hyperbolic sine of <em>value</em> is defined to be * (<em>e<sup>x</sup> - e<sup>-x</sup></em>)/2.0 * where <i>e</i> is Euler's number, approximately 2.71828183. * * <p>Special cases: *   <ul> *     <li>If the argument is NaN, then the result is NaN.</li> * *     <li>If the argument is infinite, then the result is an infinity *     with the same sign as the argument.</li> * *     <li>If the argument is zero, then the result is a zero with the *     same sign as the argument.</li> *   </ul> *</p> * * @function * @param {Number} value The number whose hyperbolic sine is to be returned. * @returns {Number} The hyperbolic sine of <code>value</code>. */// eslint-disable-next-line es/no-math-sinhCesiumMath.sinh = defaultValue(Math.sinh, function sinh(value) {  return (Math.exp(value) - Math.exp(-value)) / 2.0;});/** * Returns the hyperbolic cosine of a number. * The hyperbolic cosine of <strong>value</strong> is defined to be * (<em>e<sup>x</sup> + e<sup>-x</sup></em>)/2.0 * where <i>e</i> is Euler's number, approximately 2.71828183. * * <p>Special cases: *   <ul> *     <li>If the argument is NaN, then the result is NaN.</li> * *     <li>If the argument is infinite, then the result is positive infinity.</li> * *     <li>If the argument is zero, then the result is 1.0.</li> *   </ul> *</p> * * @function * @param {Number} value The number whose hyperbolic cosine is to be returned. * @returns {Number} The hyperbolic cosine of <code>value</code>. */// eslint-disable-next-line es/no-math-coshCesiumMath.cosh = defaultValue(Math.cosh, function cosh(value) {  return (Math.exp(value) + Math.exp(-value)) / 2.0;});/** * Computes the linear interpolation of two values. * * @param {Number} p The start value to interpolate. * @param {Number} q The end value to interpolate. * @param {Number} time The time of interpolation generally in the range <code>[0.0, 1.0]</code>. * @returns {Number} The linearly interpolated value. * * @example * const n = Cesium.Math.lerp(0.0, 2.0, 0.5); // returns 1.0 */CesiumMath.lerp = function (p, q, time) {  return (1.0 - time) * p + time * q;};/** * pi * * @type {Number} * @constant */CesiumMath.PI = Math.PI;/** * 1/pi * * @type {Number} * @constant */CesiumMath.ONE_OVER_PI = 1.0 / Math.PI;/** * pi/2 * * @type {Number} * @constant */CesiumMath.PI_OVER_TWO = Math.PI / 2.0;/** * pi/3 * * @type {Number} * @constant */CesiumMath.PI_OVER_THREE = Math.PI / 3.0;/** * pi/4 * * @type {Number} * @constant */CesiumMath.PI_OVER_FOUR = Math.PI / 4.0;/** * pi/6 * * @type {Number} * @constant */CesiumMath.PI_OVER_SIX = Math.PI / 6.0;/** * 3pi/2 * * @type {Number} * @constant */CesiumMath.THREE_PI_OVER_TWO = (3.0 * Math.PI) / 2.0;/** * 2pi * * @type {Number} * @constant */CesiumMath.TWO_PI = 2.0 * Math.PI;/** * 1/2pi * * @type {Number} * @constant */CesiumMath.ONE_OVER_TWO_PI = 1.0 / (2.0 * Math.PI);/** * The number of radians in a degree. * * @type {Number} * @constant */CesiumMath.RADIANS_PER_DEGREE = Math.PI / 180.0;/** * The number of degrees in a radian. * * @type {Number} * @constant */CesiumMath.DEGREES_PER_RADIAN = 180.0 / Math.PI;/** * The number of radians in an arc second. * * @type {Number} * @constant */CesiumMath.RADIANS_PER_ARCSECOND = CesiumMath.RADIANS_PER_DEGREE / 3600.0;/** * Converts degrees to radians. * @param {Number} degrees The angle to convert in degrees. * @returns {Number} The corresponding angle in radians. */CesiumMath.toRadians = function (degrees) {  //>>includeStart('debug', pragmas.debug);  if (!defined(degrees)) {    throw new DeveloperError("degrees is required.");  }  //>>includeEnd('debug');  return degrees * CesiumMath.RADIANS_PER_DEGREE;};/** * Converts radians to degrees. * @param {Number} radians The angle to convert in radians. * @returns {Number} The corresponding angle in degrees. */CesiumMath.toDegrees = function (radians) {  //>>includeStart('debug', pragmas.debug);  if (!defined(radians)) {    throw new DeveloperError("radians is required.");  }  //>>includeEnd('debug');  return radians * CesiumMath.DEGREES_PER_RADIAN;};/** * Converts a longitude value, in radians, to the range [<code>-Math.PI</code>, <code>Math.PI</code>). * * @param {Number} angle The longitude value, in radians, to convert to the range [<code>-Math.PI</code>, <code>Math.PI</code>). * @returns {Number} The equivalent longitude value in the range [<code>-Math.PI</code>, <code>Math.PI</code>). * * @example * // Convert 270 degrees to -90 degrees longitude * const longitude = Cesium.Math.convertLongitudeRange(Cesium.Math.toRadians(270.0)); */CesiumMath.convertLongitudeRange = function (angle) {  //>>includeStart('debug', pragmas.debug);  if (!defined(angle)) {    throw new DeveloperError("angle is required.");  }  //>>includeEnd('debug');  const twoPi = CesiumMath.TWO_PI;  const simplified = angle - Math.floor(angle / twoPi) * twoPi;  if (simplified < -Math.PI) {    return simplified + twoPi;  }  if (simplified >= Math.PI) {    return simplified - twoPi;  }  return simplified;};/** * Convenience function that clamps a latitude value, in radians, to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>). * Useful for sanitizing data before use in objects requiring correct range. * * @param {Number} angle The latitude value, in radians, to clamp to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>). * @returns {Number} The latitude value clamped to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>). * * @example * // Clamp 108 degrees latitude to 90 degrees latitude * const latitude = Cesium.Math.clampToLatitudeRange(Cesium.Math.toRadians(108.0)); */CesiumMath.clampToLatitudeRange = function (angle) {  //>>includeStart('debug', pragmas.debug);  if (!defined(angle)) {    throw new DeveloperError("angle is required.");  }  //>>includeEnd('debug');  return CesiumMath.clamp(    angle,    -1 * CesiumMath.PI_OVER_TWO,    CesiumMath.PI_OVER_TWO  );};/** * Produces an angle in the range -Pi <= angle <= Pi which is equivalent to the provided angle. * * @param {Number} angle in radians * @returns {Number} The angle in the range [<code>-CesiumMath.PI</code>, <code>CesiumMath.PI</code>]. */CesiumMath.negativePiToPi = function (angle) {  //>>includeStart('debug', pragmas.debug);  if (!defined(angle)) {    throw new DeveloperError("angle is required.");  }  //>>includeEnd('debug');  if (angle >= -CesiumMath.PI && angle <= CesiumMath.PI) {    // Early exit if the input is already inside the range. This avoids    // unnecessary math which could introduce floating point error.    return angle;  }  return CesiumMath.zeroToTwoPi(angle + CesiumMath.PI) - CesiumMath.PI;};/** * Produces an angle in the range 0 <= angle <= 2Pi which is equivalent to the provided angle. * * @param {Number} angle in radians * @returns {Number} The angle in the range [0, <code>CesiumMath.TWO_PI</code>]. */CesiumMath.zeroToTwoPi = function (angle) {  //>>includeStart('debug', pragmas.debug);  if (!defined(angle)) {    throw new DeveloperError("angle is required.");  }  //>>includeEnd('debug');  if (angle >= 0 && angle <= CesiumMath.TWO_PI) {    // Early exit if the input is already inside the range. This avoids    // unnecessary math which could introduce floating point error.    return angle;  }  const mod = CesiumMath.mod(angle, CesiumMath.TWO_PI);  if (    Math.abs(mod) < CesiumMath.EPSILON14 &&    Math.abs(angle) > CesiumMath.EPSILON14  ) {    return CesiumMath.TWO_PI;  }  return mod;};/** * The modulo operation that also works for negative dividends. * * @param {Number} m The dividend. * @param {Number} n The divisor. * @returns {Number} The remainder. */CesiumMath.mod = function (m, n) {  //>>includeStart('debug', pragmas.debug);  if (!defined(m)) {    throw new DeveloperError("m is required.");  }  if (!defined(n)) {    throw new DeveloperError("n is required.");  }  if (n === 0.0) {    throw new DeveloperError("divisor cannot be 0.");  }  //>>includeEnd('debug');  if (CesiumMath.sign(m) === CesiumMath.sign(n) && Math.abs(m) < Math.abs(n)) {    // Early exit if the input does not need to be modded. This avoids    // unnecessary math which could introduce floating point error.    return m;  }  return ((m % n) + n) % n;};/** * Determines if two values are equal using an absolute or relative tolerance test. This is useful * to avoid problems due to roundoff error when comparing floating-point values directly. The values are * first compared using an absolute tolerance test. If that fails, a relative tolerance test is performed. * Use this test if you are unsure of the magnitudes of left and right. * * @param {Number} left The first value to compare. * @param {Number} right The other value to compare. * @param {Number} [relativeEpsilon=0] The maximum inclusive delta between <code>left</code> and <code>right</code> for the relative tolerance test. * @param {Number} [absoluteEpsilon=relativeEpsilon] The maximum inclusive delta between <code>left</code> and <code>right</code> for the absolute tolerance test. * @returns {Boolean} <code>true</code> if the values are equal within the epsilon; otherwise, <code>false</code>. * * @example * const a = Cesium.Math.equalsEpsilon(0.0, 0.01, Cesium.Math.EPSILON2); // true * const b = Cesium.Math.equalsEpsilon(0.0, 0.1, Cesium.Math.EPSILON2);  // false * const c = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON7); // true * const d = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON9); // false */CesiumMath.equalsEpsilon = function (  left,  right,  relativeEpsilon,  absoluteEpsilon) {  //>>includeStart('debug', pragmas.debug);  if (!defined(left)) {    throw new DeveloperError("left is required.");  }  if (!defined(right)) {    throw new DeveloperError("right is required.");  }  //>>includeEnd('debug');  relativeEpsilon = defaultValue(relativeEpsilon, 0.0);  absoluteEpsilon = defaultValue(absoluteEpsilon, relativeEpsilon);  const absDiff = Math.abs(left - right);  return (    absDiff <= absoluteEpsilon ||    absDiff <= relativeEpsilon * Math.max(Math.abs(left), Math.abs(right))  );};/** * Determines if the left value is less than the right value. If the two values are within * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false. * * @param {Number} left The first number to compare. * @param {Number} right The second number to compare. * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison. * @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> by more than *          <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is greater or if the two *          values are nearly equal. */CesiumMath.lessThan = function (left, right, absoluteEpsilon) {  //>>includeStart('debug', pragmas.debug);  if (!defined(left)) {    throw new DeveloperError("first is required.");  }  if (!defined(right)) {    throw new DeveloperError("second is required.");  }  if (!defined(absoluteEpsilon)) {    throw new DeveloperError("absoluteEpsilon is required.");  }  //>>includeEnd('debug');  return left - right < -absoluteEpsilon;};/** * Determines if the left value is less than or equal to the right value. If the two values are within * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true. * * @param {Number} left The first number to compare. * @param {Number} right The second number to compare. * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison. * @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> or if the *          the values are nearly equal. */CesiumMath.lessThanOrEquals = function (left, right, absoluteEpsilon) {  //>>includeStart('debug', pragmas.debug);  if (!defined(left)) {    throw new DeveloperError("first is required.");  }  if (!defined(right)) {    throw new DeveloperError("second is required.");  }  if (!defined(absoluteEpsilon)) {    throw new DeveloperError("absoluteEpsilon is required.");  }  //>>includeEnd('debug');  return left - right < absoluteEpsilon;};/** * Determines if the left value is greater the right value. If the two values are within * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false. * * @param {Number} left The first number to compare. * @param {Number} right The second number to compare. * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison. * @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> by more than *          <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is less or if the two *          values are nearly equal. */CesiumMath.greaterThan = function (left, right, absoluteEpsilon) {  //>>includeStart('debug', pragmas.debug);  if (!defined(left)) {    throw new DeveloperError("first is required.");  }  if (!defined(right)) {    throw new DeveloperError("second is required.");  }  if (!defined(absoluteEpsilon)) {    throw new DeveloperError("absoluteEpsilon is required.");  }  //>>includeEnd('debug');  return left - right > absoluteEpsilon;};/** * Determines if the left value is greater than or equal to the right value. If the two values are within * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true. * * @param {Number} left The first number to compare. * @param {Number} right The second number to compare. * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison. * @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> or if the *          the values are nearly equal. */CesiumMath.greaterThanOrEquals = function (left, right, absoluteEpsilon) {  //>>includeStart('debug', pragmas.debug);  if (!defined(left)) {    throw new DeveloperError("first is required.");  }  if (!defined(right)) {    throw new DeveloperError("second is required.");  }  if (!defined(absoluteEpsilon)) {    throw new DeveloperError("absoluteEpsilon is required.");  }  //>>includeEnd('debug');  return left - right > -absoluteEpsilon;};const factorials = [1];/** * Computes the factorial of the provided number. * * @param {Number} n The number whose factorial is to be computed. * @returns {Number} The factorial of the provided number or undefined if the number is less than 0. * * @exception {DeveloperError} A number greater than or equal to 0 is required. * * * @example * //Compute 7!, which is equal to 5040 * const computedFactorial = Cesium.Math.factorial(7); * * @see {@link http://en.wikipedia.org/wiki/Factorial|Factorial on Wikipedia} */CesiumMath.factorial = function (n) {  //>>includeStart('debug', pragmas.debug);  if (typeof n !== "number" || n < 0) {    throw new DeveloperError(      "A number greater than or equal to 0 is required."    );  }  //>>includeEnd('debug');  const length = factorials.length;  if (n >= length) {    let sum = factorials[length - 1];    for (let i = length; i <= n; i++) {      const next = sum * i;      factorials.push(next);      sum = next;    }  }  return factorials[n];};/** * Increments a number with a wrapping to a minimum value if the number exceeds the maximum value. * * @param {Number} [n] The number to be incremented. * @param {Number} [maximumValue] The maximum incremented value before rolling over to the minimum value. * @param {Number} [minimumValue=0.0] The number reset to after the maximum value has been exceeded. * @returns {Number} The incremented number. * * @exception {DeveloperError} Maximum value must be greater than minimum value. * * @example * const n = Cesium.Math.incrementWrap(5, 10, 0); // returns 6 * const m = Cesium.Math.incrementWrap(10, 10, 0); // returns 0 */CesiumMath.incrementWrap = function (n, maximumValue, minimumValue) {  minimumValue = defaultValue(minimumValue, 0.0);  //>>includeStart('debug', pragmas.debug);  if (!defined(n)) {    throw new DeveloperError("n is required.");  }  if (maximumValue <= minimumValue) {    throw new DeveloperError("maximumValue must be greater than minimumValue.");  }  //>>includeEnd('debug');  ++n;  if (n > maximumValue) {    n = minimumValue;  }  return n;};/** * Determines if a non-negative integer is a power of two. * The maximum allowed input is (2^32)-1 due to 32-bit bitwise operator limitation in Javascript. * * @param {Number} n The integer to test in the range [0, (2^32)-1]. * @returns {Boolean} <code>true</code> if the number if a power of two; otherwise, <code>false</code>. * * @exception {DeveloperError} A number between 0 and (2^32)-1 is required. * * @example * const t = Cesium.Math.isPowerOfTwo(16); // true * const f = Cesium.Math.isPowerOfTwo(20); // false */CesiumMath.isPowerOfTwo = function (n) {  //>>includeStart('debug', pragmas.debug);  if (typeof n !== "number" || n < 0 || n > 4294967295) {    throw new DeveloperError("A number between 0 and (2^32)-1 is required.");  }  //>>includeEnd('debug');  return n !== 0 && (n & (n - 1)) === 0;};/** * Computes the next power-of-two integer greater than or equal to the provided non-negative integer. * The maximum allowed input is 2^31 due to 32-bit bitwise operator limitation in Javascript. * * @param {Number} n The integer to test in the range [0, 2^31]. * @returns {Number} The next power-of-two integer. * * @exception {DeveloperError} A number between 0 and 2^31 is required. * * @example * const n = Cesium.Math.nextPowerOfTwo(29); // 32 * const m = Cesium.Math.nextPowerOfTwo(32); // 32 */CesiumMath.nextPowerOfTwo = function (n) {  //>>includeStart('debug', pragmas.debug);  if (typeof n !== "number" || n < 0 || n > 2147483648) {    throw new DeveloperError("A number between 0 and 2^31 is required.");  }  //>>includeEnd('debug');  // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2  --n;  n |= n >> 1;  n |= n >> 2;  n |= n >> 4;  n |= n >> 8;  n |= n >> 16;  ++n;  return n;};/** * Computes the previous power-of-two integer less than or equal to the provided non-negative integer. * The maximum allowed input is (2^32)-1 due to 32-bit bitwise operator limitation in Javascript. * * @param {Number} n The integer to test in the range [0, (2^32)-1]. * @returns {Number} The previous power-of-two integer. * * @exception {DeveloperError} A number between 0 and (2^32)-1 is required. * * @example * const n = Cesium.Math.previousPowerOfTwo(29); // 16 * const m = Cesium.Math.previousPowerOfTwo(32); // 32 */CesiumMath.previousPowerOfTwo = function (n) {  //>>includeStart('debug', pragmas.debug);  if (typeof n !== "number" || n < 0 || n > 4294967295) {    throw new DeveloperError("A number between 0 and (2^32)-1 is required.");  }  //>>includeEnd('debug');  n |= n >> 1;  n |= n >> 2;  n |= n >> 4;  n |= n >> 8;  n |= n >> 16;  n |= n >> 32;  // The previous bitwise operations implicitly convert to signed 32-bit. Use `>>>` to convert to unsigned  n = (n >>> 0) - (n >>> 1);  return n;};/** * Constraint a value to lie between two values. * * @param {Number} value The value to clamp. * @param {Number} min The minimum value. * @param {Number} max The maximum value. * @returns {Number} The clamped value such that min <= result <= max. */CesiumMath.clamp = function (value, min, max) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("value", value);  Check.typeOf.number("min", min);  Check.typeOf.number("max", max);  //>>includeEnd('debug');  return value < min ? min : value > max ? max : value;};let randomNumberGenerator = new MersenneTwister();/** * Sets the seed used by the random number generator * in {@link CesiumMath#nextRandomNumber}. * * @param {Number} seed An integer used as the seed. */CesiumMath.setRandomNumberSeed = function (seed) {  //>>includeStart('debug', pragmas.debug);  if (!defined(seed)) {    throw new DeveloperError("seed is required.");  }  //>>includeEnd('debug');  randomNumberGenerator = new MersenneTwister(seed);};/** * Generates a random floating point number in the range of [0.0, 1.0) * using a Mersenne twister. * * @returns {Number} A random number in the range of [0.0, 1.0). * * @see CesiumMath.setRandomNumberSeed * @see {@link http://en.wikipedia.org/wiki/Mersenne_twister|Mersenne twister on Wikipedia} */CesiumMath.nextRandomNumber = function () {  return randomNumberGenerator.random();};/** * Generates a random number between two numbers. * * @param {Number} min The minimum value. * @param {Number} max The maximum value. * @returns {Number} A random number between the min and max. */CesiumMath.randomBetween = function (min, max) {  return CesiumMath.nextRandomNumber() * (max - min) + min;};/** * Computes <code>Math.acos(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0] * so that the function will never return NaN. * * @param {Number} value The value for which to compute acos. * @returns {Number} The acos of the value if the value is in the range [-1.0, 1.0], or the acos of -1.0 or 1.0, *          whichever is closer, if the value is outside the range. */CesiumMath.acosClamped = function (value) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required.");  }  //>>includeEnd('debug');  return Math.acos(CesiumMath.clamp(value, -1.0, 1.0));};/** * Computes <code>Math.asin(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0] * so that the function will never return NaN. * * @param {Number} value The value for which to compute asin. * @returns {Number} The asin of the value if the value is in the range [-1.0, 1.0], or the asin of -1.0 or 1.0, *          whichever is closer, if the value is outside the range. */CesiumMath.asinClamped = function (value) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required.");  }  //>>includeEnd('debug');  return Math.asin(CesiumMath.clamp(value, -1.0, 1.0));};/** * Finds the chord length between two points given the circle's radius and the angle between the points. * * @param {Number} angle The angle between the two points. * @param {Number} radius The radius of the circle. * @returns {Number} The chord length. */CesiumMath.chordLength = function (angle, radius) {  //>>includeStart('debug', pragmas.debug);  if (!defined(angle)) {    throw new DeveloperError("angle is required.");  }  if (!defined(radius)) {    throw new DeveloperError("radius is required.");  }  //>>includeEnd('debug');  return 2.0 * radius * Math.sin(angle * 0.5);};/** * Finds the logarithm of a number to a base. * * @param {Number} number The number. * @param {Number} base The base. * @returns {Number} The result. */CesiumMath.logBase = function (number, base) {  //>>includeStart('debug', pragmas.debug);  if (!defined(number)) {    throw new DeveloperError("number is required.");  }  if (!defined(base)) {    throw new DeveloperError("base is required.");  }  //>>includeEnd('debug');  return Math.log(number) / Math.log(base);};/** * Finds the cube root of a number. * Returns NaN if <code>number</code> is not provided. * * @function * @param {Number} [number] The number. * @returns {Number} The result. */// eslint-disable-next-line es/no-math-cbrtCesiumMath.cbrt = defaultValue(Math.cbrt, function cbrt(number) {  const result = Math.pow(Math.abs(number), 1.0 / 3.0);  return number < 0.0 ? -result : result;});/** * Finds the base 2 logarithm of a number. * * @function * @param {Number} number The number. * @returns {Number} The result. */// eslint-disable-next-line es/no-math-log2CesiumMath.log2 = defaultValue(Math.log2, function log2(number) {  return Math.log(number) * Math.LOG2E;});/** * @private */CesiumMath.fog = function (distanceToCamera, density) {  const scalar = distanceToCamera * density;  return 1.0 - Math.exp(-(scalar * scalar));};/** * Computes a fast approximation of Atan for input in the range [-1, 1]. * * Based on Michal Drobot's approximation from ShaderFastLibs, * which in turn is based on "Efficient approximations for the arctangent function," * Rajan, S. Sichun Wang Inkol, R. Joyal, A., May 2006. * Adapted from ShaderFastLibs under MIT License. * * @param {Number} x An input number in the range [-1, 1] * @returns {Number} An approximation of atan(x) */CesiumMath.fastApproximateAtan = function (x) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("x", x);  //>>includeEnd('debug');  return x * (-0.1784 * Math.abs(x) - 0.0663 * x * x + 1.0301);};/** * Computes a fast approximation of Atan2(x, y) for arbitrary input scalars. * * Range reduction math based on nvidia's cg reference implementation: http://developer.download.nvidia.com/cg/atan2.html * * @param {Number} x An input number that isn't zero if y is zero. * @param {Number} y An input number that isn't zero if x is zero. * @returns {Number} An approximation of atan2(x, y) */CesiumMath.fastApproximateAtan2 = function (x, y) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("x", x);  Check.typeOf.number("y", y);  //>>includeEnd('debug');  // atan approximations are usually only reliable over [-1, 1]  // So reduce the range by flipping whether x or y is on top based on which is bigger.  let opposite;  let t = Math.abs(x); // t used as swap and atan result.  opposite = Math.abs(y);  const adjacent = Math.max(t, opposite);  opposite = Math.min(t, opposite);  const oppositeOverAdjacent = opposite / adjacent;  //>>includeStart('debug', pragmas.debug);  if (isNaN(oppositeOverAdjacent)) {    throw new DeveloperError("either x or y must be nonzero");  }  //>>includeEnd('debug');  t = CesiumMath.fastApproximateAtan(oppositeOverAdjacent);  // Undo range reduction  t = Math.abs(y) > Math.abs(x) ? CesiumMath.PI_OVER_TWO - t : t;  t = x < 0.0 ? CesiumMath.PI - t : t;  t = y < 0.0 ? -t : t;  return t;};export default CesiumMath;
 |