| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838 | import Cartesian3 from "./Cartesian3.js";import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import CesiumMath from "./Math.js";/** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * @implements {ArrayLike<number>} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromArray * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromHeadingPitchRoll * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.fromCrossProduct * @see Matrix3.fromRotationX * @see Matrix3.fromRotationY * @see Matrix3.fromRotationZ * @see Matrix2 * @see Matrix4 */function Matrix3(  column0Row0,  column1Row0,  column2Row0,  column0Row1,  column1Row1,  column2Row1,  column0Row2,  column1Row2,  column2Row2) {  this[0] = defaultValue(column0Row0, 0.0);  this[1] = defaultValue(column0Row1, 0.0);  this[2] = defaultValue(column0Row2, 0.0);  this[3] = defaultValue(column1Row0, 0.0);  this[4] = defaultValue(column1Row1, 0.0);  this[5] = defaultValue(column1Row2, 0.0);  this[6] = defaultValue(column2Row0, 0.0);  this[7] = defaultValue(column2Row1, 0.0);  this[8] = defaultValue(column2Row2, 0.0);}/** * The number of elements used to pack the object into an array. * @type {Number} */Matrix3.packedLength = 9;/** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */Matrix3.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("value", value);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  array[startingIndex++] = value[0];  array[startingIndex++] = value[1];  array[startingIndex++] = value[2];  array[startingIndex++] = value[3];  array[startingIndex++] = value[4];  array[startingIndex++] = value[5];  array[startingIndex++] = value[6];  array[startingIndex++] = value[7];  array[startingIndex++] = value[8];  return array;};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */Matrix3.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  if (!defined(result)) {    result = new Matrix3();  }  result[0] = array[startingIndex++];  result[1] = array[startingIndex++];  result[2] = array[startingIndex++];  result[3] = array[startingIndex++];  result[4] = array[startingIndex++];  result[5] = array[startingIndex++];  result[6] = array[startingIndex++];  result[7] = array[startingIndex++];  result[8] = array[startingIndex++];  return result;};/** * Flattens an array of Matrix3s into an array of components. The components * are stored in column-major order. * * @param {Matrix3[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 9 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 9) elements. * @returns {Number[]} The packed array. */Matrix3.packArray = function (array, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  const length = array.length;  const resultLength = length * 9;  if (!defined(result)) {    result = new Array(resultLength);  } else if (!Array.isArray(result) && result.length !== resultLength) {    //>>includeStart('debug', pragmas.debug);    throw new DeveloperError(      "If result is a typed array, it must have exactly array.length * 9 elements"    );    //>>includeEnd('debug');  } else if (result.length !== resultLength) {    result.length = resultLength;  }  for (let i = 0; i < length; ++i) {    Matrix3.pack(array[i], result, i * 9);  }  return result;};/** * Unpacks an array of column-major matrix components into an array of Matrix3s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix3[]} [result] The array onto which to store the result. * @returns {Matrix3[]} The unpacked array. */Matrix3.unpackArray = function (array, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 9);  if (array.length % 9 !== 0) {    throw new DeveloperError("array length must be a multiple of 9.");  }  //>>includeEnd('debug');  const length = array.length;  if (!defined(result)) {    result = new Array(length / 9);  } else {    result.length = length / 9;  }  for (let i = 0; i < length; i += 9) {    const index = i / 9;    result[index] = Matrix3.unpack(array, i, result[index]);  }  return result;};/** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */Matrix3.clone = function (matrix, result) {  if (!defined(matrix)) {    return undefined;  }  if (!defined(result)) {    return new Matrix3(      matrix[0],      matrix[3],      matrix[6],      matrix[1],      matrix[4],      matrix[7],      matrix[2],      matrix[5],      matrix[8]    );  }  result[0] = matrix[0];  result[1] = matrix[1];  result[2] = matrix[2];  result[3] = matrix[3];  result[4] = matrix[4];  result[5] = matrix[5];  result[6] = matrix[6];  result[7] = matrix[7];  result[8] = matrix[8];  return result;};/** * Creates a Matrix3 from 9 consecutive elements in an array. * * @function * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix.  Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * const v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m2 = Cesium.Matrix3.fromArray(v2, 2); */Matrix3.fromArray = Matrix3.unpack;/** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */Matrix3.fromColumnMajorArray = function (values, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("values", values);  //>>includeEnd('debug');  return Matrix3.clone(values, result);};/** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */Matrix3.fromRowMajorArray = function (values, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("values", values);  //>>includeEnd('debug');  if (!defined(result)) {    return new Matrix3(      values[0],      values[1],      values[2],      values[3],      values[4],      values[5],      values[6],      values[7],      values[8]    );  }  result[0] = values[0];  result[1] = values[3];  result[2] = values[6];  result[3] = values[1];  result[4] = values[4];  result[5] = values[7];  result[6] = values[2];  result[7] = values[5];  result[8] = values[8];  return result;};/** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */Matrix3.fromQuaternion = function (quaternion, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("quaternion", quaternion);  //>>includeEnd('debug');  const x2 = quaternion.x * quaternion.x;  const xy = quaternion.x * quaternion.y;  const xz = quaternion.x * quaternion.z;  const xw = quaternion.x * quaternion.w;  const y2 = quaternion.y * quaternion.y;  const yz = quaternion.y * quaternion.z;  const yw = quaternion.y * quaternion.w;  const z2 = quaternion.z * quaternion.z;  const zw = quaternion.z * quaternion.w;  const w2 = quaternion.w * quaternion.w;  const m00 = x2 - y2 - z2 + w2;  const m01 = 2.0 * (xy - zw);  const m02 = 2.0 * (xz + yw);  const m10 = 2.0 * (xy + zw);  const m11 = -x2 + y2 - z2 + w2;  const m12 = 2.0 * (yz - xw);  const m20 = 2.0 * (xz - yw);  const m21 = 2.0 * (yz + xw);  const m22 = -x2 - y2 + z2 + w2;  if (!defined(result)) {    return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22);  }  result[0] = m00;  result[1] = m10;  result[2] = m20;  result[3] = m01;  result[4] = m11;  result[5] = m21;  result[6] = m02;  result[7] = m12;  result[8] = m22;  return result;};/** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */Matrix3.fromHeadingPitchRoll = function (headingPitchRoll, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("headingPitchRoll", headingPitchRoll);  //>>includeEnd('debug');  const cosTheta = Math.cos(-headingPitchRoll.pitch);  const cosPsi = Math.cos(-headingPitchRoll.heading);  const cosPhi = Math.cos(headingPitchRoll.roll);  const sinTheta = Math.sin(-headingPitchRoll.pitch);  const sinPsi = Math.sin(-headingPitchRoll.heading);  const sinPhi = Math.sin(headingPitchRoll.roll);  const m00 = cosTheta * cosPsi;  const m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi;  const m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi;  const m10 = cosTheta * sinPsi;  const m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi;  const m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi;  const m20 = -sinTheta;  const m21 = sinPhi * cosTheta;  const m22 = cosPhi * cosTheta;  if (!defined(result)) {    return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22);  }  result[0] = m00;  result[1] = m10;  result[2] = m20;  result[3] = m01;  result[4] = m11;  result[5] = m21;  result[6] = m02;  result[7] = m12;  result[8] = m22;  return result;};/** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * //   [7.0, 0.0, 0.0] * //   [0.0, 8.0, 0.0] * //   [0.0, 0.0, 9.0] * const m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */Matrix3.fromScale = function (scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("scale", scale);  //>>includeEnd('debug');  if (!defined(result)) {    return new Matrix3(scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z);  }  result[0] = scale.x;  result[1] = 0.0;  result[2] = 0.0;  result[3] = 0.0;  result[4] = scale.y;  result[5] = 0.0;  result[6] = 0.0;  result[7] = 0.0;  result[8] = scale.z;  return result;};/** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * //   [2.0, 0.0, 0.0] * //   [0.0, 2.0, 0.0] * //   [0.0, 0.0, 2.0] * const m = Cesium.Matrix3.fromUniformScale(2.0); */Matrix3.fromUniformScale = function (scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("scale", scale);  //>>includeEnd('debug');  if (!defined(result)) {    return new Matrix3(scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale);  }  result[0] = scale;  result[1] = 0.0;  result[2] = 0.0;  result[3] = 0.0;  result[4] = scale;  result[5] = 0.0;  result[6] = 0.0;  result[7] = 0.0;  result[8] = scale;  return result;};/** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * //   [0.0, -9.0,  8.0] * //   [9.0,  0.0, -7.0] * //   [-8.0, 7.0,  0.0] * const m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */Matrix3.fromCrossProduct = function (vector, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("vector", vector);  //>>includeEnd('debug');  if (!defined(result)) {    return new Matrix3(      0.0,      -vector.z,      vector.y,      vector.z,      0.0,      -vector.x,      -vector.y,      vector.x,      0.0    );  }  result[0] = 0.0;  result[1] = vector.z;  result[2] = -vector.y;  result[3] = -vector.z;  result[4] = 0.0;  result[5] = vector.x;  result[6] = vector.y;  result[7] = -vector.x;  result[8] = 0.0;  return result;};/** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */Matrix3.fromRotationX = function (angle, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("angle", angle);  //>>includeEnd('debug');  const cosAngle = Math.cos(angle);  const sinAngle = Math.sin(angle);  if (!defined(result)) {    return new Matrix3(      1.0,      0.0,      0.0,      0.0,      cosAngle,      -sinAngle,      0.0,      sinAngle,      cosAngle    );  }  result[0] = 1.0;  result[1] = 0.0;  result[2] = 0.0;  result[3] = 0.0;  result[4] = cosAngle;  result[5] = sinAngle;  result[6] = 0.0;  result[7] = -sinAngle;  result[8] = cosAngle;  return result;};/** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */Matrix3.fromRotationY = function (angle, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("angle", angle);  //>>includeEnd('debug');  const cosAngle = Math.cos(angle);  const sinAngle = Math.sin(angle);  if (!defined(result)) {    return new Matrix3(      cosAngle,      0.0,      sinAngle,      0.0,      1.0,      0.0,      -sinAngle,      0.0,      cosAngle    );  }  result[0] = cosAngle;  result[1] = 0.0;  result[2] = -sinAngle;  result[3] = 0.0;  result[4] = 1.0;  result[5] = 0.0;  result[6] = sinAngle;  result[7] = 0.0;  result[8] = cosAngle;  return result;};/** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation.  Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */Matrix3.fromRotationZ = function (angle, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("angle", angle);  //>>includeEnd('debug');  const cosAngle = Math.cos(angle);  const sinAngle = Math.sin(angle);  if (!defined(result)) {    return new Matrix3(      cosAngle,      -sinAngle,      0.0,      sinAngle,      cosAngle,      0.0,      0.0,      0.0,      1.0    );  }  result[0] = cosAngle;  result[1] = sinAngle;  result[2] = 0.0;  result[3] = -sinAngle;  result[4] = cosAngle;  result[5] = 0.0;  result[6] = 0.0;  result[7] = 0.0;  result[8] = 1.0;  return result;};/** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */Matrix3.toArray = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  //>>includeEnd('debug');  if (!defined(result)) {    return [      matrix[0],      matrix[1],      matrix[2],      matrix[3],      matrix[4],      matrix[5],      matrix[6],      matrix[7],      matrix[8],    ];  }  result[0] = matrix[0];  result[1] = matrix[1];  result[2] = matrix[2];  result[3] = matrix[3];  result[4] = matrix[4];  result[5] = matrix[5];  result[6] = matrix[6];  result[7] = matrix[7];  result[8] = matrix[8];  return result;};/** * Computes the array index of the element at the provided row and column. * * @param {Number} column The zero-based index of the column. * @param {Number} row The zero-based index of the row. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * const myMatrix = new Cesium.Matrix3(); * const column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */Matrix3.getElementIndex = function (column, row) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number.greaterThanOrEquals("row", row, 0);  Check.typeOf.number.lessThanOrEquals("row", row, 2);  Check.typeOf.number.greaterThanOrEquals("column", column, 0);  Check.typeOf.number.lessThanOrEquals("column", column, 2);  //>>includeEnd('debug');  return column * 3 + row;};/** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */Matrix3.getColumn = function (matrix, index, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number.greaterThanOrEquals("index", index, 0);  Check.typeOf.number.lessThanOrEquals("index", index, 2);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const startIndex = index * 3;  const x = matrix[startIndex];  const y = matrix[startIndex + 1];  const z = matrix[startIndex + 2];  result.x = x;  result.y = y;  result.z = z;  return result;};/** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */Matrix3.setColumn = function (matrix, index, cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number.greaterThanOrEquals("index", index, 0);  Check.typeOf.number.lessThanOrEquals("index", index, 2);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result = Matrix3.clone(matrix, result);  const startIndex = index * 3;  result[startIndex] = cartesian.x;  result[startIndex + 1] = cartesian.y;  result[startIndex + 2] = cartesian.z;  return result;};/** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */Matrix3.getRow = function (matrix, index, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number.greaterThanOrEquals("index", index, 0);  Check.typeOf.number.lessThanOrEquals("index", index, 2);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const x = matrix[index];  const y = matrix[index + 3];  const z = matrix[index + 6];  result.x = x;  result.y = y;  result.z = z;  return result;};/** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */Matrix3.setRow = function (matrix, index, cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number.greaterThanOrEquals("index", index, 0);  Check.typeOf.number.lessThanOrEquals("index", index, 2);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result = Matrix3.clone(matrix, result);  result[index] = cartesian.x;  result[index + 3] = cartesian.y;  result[index + 6] = cartesian.z;  return result;};const scaleScratch1 = new Cartesian3();/** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */Matrix3.setScale = function (matrix, scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("scale", scale);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const existingScale = Matrix3.getScale(matrix, scaleScratch1);  const scaleRatioX = scale.x / existingScale.x;  const scaleRatioY = scale.y / existingScale.y;  const scaleRatioZ = scale.z / existingScale.z;  result[0] = matrix[0] * scaleRatioX;  result[1] = matrix[1] * scaleRatioX;  result[2] = matrix[2] * scaleRatioX;  result[3] = matrix[3] * scaleRatioY;  result[4] = matrix[4] * scaleRatioY;  result[5] = matrix[5] * scaleRatioY;  result[6] = matrix[6] * scaleRatioZ;  result[7] = matrix[7] * scaleRatioZ;  result[8] = matrix[8] * scaleRatioZ;  return result;};const scaleScratch2 = new Cartesian3();/** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */Matrix3.setUniformScale = function (matrix, scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number("scale", scale);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const existingScale = Matrix3.getScale(matrix, scaleScratch2);  const scaleRatioX = scale / existingScale.x;  const scaleRatioY = scale / existingScale.y;  const scaleRatioZ = scale / existingScale.z;  result[0] = matrix[0] * scaleRatioX;  result[1] = matrix[1] * scaleRatioX;  result[2] = matrix[2] * scaleRatioX;  result[3] = matrix[3] * scaleRatioY;  result[4] = matrix[4] * scaleRatioY;  result[5] = matrix[5] * scaleRatioY;  result[6] = matrix[6] * scaleRatioZ;  result[7] = matrix[7] * scaleRatioZ;  result[8] = matrix[8] * scaleRatioZ;  return result;};const scratchColumn = new Cartesian3();/** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale */Matrix3.getScale = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = Cartesian3.magnitude(    Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn)  );  result.y = Cartesian3.magnitude(    Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn)  );  result.z = Cartesian3.magnitude(    Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn)  );  return result;};const scaleScratch3 = new Cartesian3();/** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */Matrix3.getMaximumScale = function (matrix) {  Matrix3.getScale(matrix, scaleScratch3);  return Cartesian3.maximumComponent(scaleScratch3);};const scaleScratch4 = new Cartesian3();/** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} rotation The rotation matrix. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.getRotation */Matrix3.setRotation = function (matrix, rotation, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const scale = Matrix3.getScale(matrix, scaleScratch4);  result[0] = rotation[0] * scale.x;  result[1] = rotation[1] * scale.x;  result[2] = rotation[2] * scale.x;  result[3] = rotation[3] * scale.y;  result[4] = rotation[4] * scale.y;  result[5] = rotation[5] * scale.y;  result[6] = rotation[6] * scale.z;  result[7] = rotation[7] * scale.z;  result[8] = rotation[8] * scale.z;  return result;};const scaleScratch5 = new Cartesian3();/** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setRotation */Matrix3.getRotation = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const scale = Matrix3.getScale(matrix, scaleScratch5);  result[0] = matrix[0] / scale.x;  result[1] = matrix[1] / scale.x;  result[2] = matrix[2] / scale.x;  result[3] = matrix[3] / scale.y;  result[4] = matrix[4] / scale.y;  result[5] = matrix[5] / scale.y;  result[6] = matrix[6] / scale.z;  result[7] = matrix[7] / scale.z;  result[8] = matrix[8] / scale.z;  return result;};/** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.multiply = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const column0Row0 =    left[0] * right[0] + left[3] * right[1] + left[6] * right[2];  const column0Row1 =    left[1] * right[0] + left[4] * right[1] + left[7] * right[2];  const column0Row2 =    left[2] * right[0] + left[5] * right[1] + left[8] * right[2];  const column1Row0 =    left[0] * right[3] + left[3] * right[4] + left[6] * right[5];  const column1Row1 =    left[1] * right[3] + left[4] * right[4] + left[7] * right[5];  const column1Row2 =    left[2] * right[3] + left[5] * right[4] + left[8] * right[5];  const column2Row0 =    left[0] * right[6] + left[3] * right[7] + left[6] * right[8];  const column2Row1 =    left[1] * right[6] + left[4] * right[7] + left[7] * right[8];  const column2Row2 =    left[2] * right[6] + left[5] * right[7] + left[8] * right[8];  result[0] = column0Row0;  result[1] = column0Row1;  result[2] = column0Row2;  result[3] = column1Row0;  result[4] = column1Row1;  result[5] = column1Row2;  result[6] = column2Row0;  result[7] = column2Row1;  result[8] = column2Row2;  return result;};/** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.add = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = left[0] + right[0];  result[1] = left[1] + right[1];  result[2] = left[2] + right[2];  result[3] = left[3] + right[3];  result[4] = left[4] + right[4];  result[5] = left[5] + right[5];  result[6] = left[6] + right[6];  result[7] = left[7] + right[7];  result[8] = left[8] + right[8];  return result;};/** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.subtract = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = left[0] - right[0];  result[1] = left[1] - right[1];  result[2] = left[2] - right[2];  result[3] = left[3] - right[3];  result[4] = left[4] - right[4];  result[5] = left[5] - right[5];  result[6] = left[6] - right[6];  result[7] = left[7] - right[7];  result[8] = left[8] - right[8];  return result;};/** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */Matrix3.multiplyByVector = function (matrix, cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const vX = cartesian.x;  const vY = cartesian.y;  const vZ = cartesian.z;  const x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ;  const y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ;  const z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ;  result.x = x;  result.y = y;  result.z = z;  return result;};/** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.multiplyByScalar = function (matrix, scalar, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number("scalar", scalar);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = matrix[0] * scalar;  result[1] = matrix[1] * scalar;  result[2] = matrix[2] * scalar;  result[3] = matrix[3] * scalar;  result[4] = matrix[4] * scalar;  result[5] = matrix[5] * scalar;  result[6] = matrix[6] * scalar;  result[7] = matrix[7] * scalar;  result[8] = matrix[8] * scalar;  return result;};/** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */Matrix3.multiplyByScale = function (matrix, scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("scale", scale);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = matrix[0] * scale.x;  result[1] = matrix[1] * scale.x;  result[2] = matrix[2] * scale.x;  result[3] = matrix[3] * scale.y;  result[4] = matrix[4] * scale.y;  result[5] = matrix[5] * scale.y;  result[6] = matrix[6] * scale.z;  result[7] = matrix[7] * scale.z;  result[8] = matrix[8] * scale.z;  return result;};/** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromUniformScale(scale), m); * Cesium.Matrix3.multiplyByUniformScale(m, scale, m); * * @see Matrix3.multiplyByScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */Matrix3.multiplyByUniformScale = function (matrix, scale, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.number("scale", scale);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = matrix[0] * scale;  result[1] = matrix[1] * scale;  result[2] = matrix[2] * scale;  result[3] = matrix[3] * scale;  result[4] = matrix[4] * scale;  result[5] = matrix[5] * scale;  result[6] = matrix[6] * scale;  result[7] = matrix[7] * scale;  result[8] = matrix[8] * scale;  return result;};/** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.negate = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = -matrix[0];  result[1] = -matrix[1];  result[2] = -matrix[2];  result[3] = -matrix[3];  result[4] = -matrix[4];  result[5] = -matrix[5];  result[6] = -matrix[6];  result[7] = -matrix[7];  result[8] = -matrix[8];  return result;};/** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.transpose = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const column0Row0 = matrix[0];  const column0Row1 = matrix[3];  const column0Row2 = matrix[6];  const column1Row0 = matrix[1];  const column1Row1 = matrix[4];  const column1Row2 = matrix[7];  const column2Row0 = matrix[2];  const column2Row1 = matrix[5];  const column2Row2 = matrix[8];  result[0] = column0Row0;  result[1] = column0Row1;  result[2] = column0Row2;  result[3] = column1Row0;  result[4] = column1Row1;  result[5] = column1Row2;  result[6] = column2Row0;  result[7] = column2Row1;  result[8] = column2Row2;  return result;};function computeFrobeniusNorm(matrix) {  let norm = 0.0;  for (let i = 0; i < 9; ++i) {    const temp = matrix[i];    norm += temp * temp;  }  return Math.sqrt(norm);}const rowVal = [1, 0, 0];const colVal = [2, 2, 1];function offDiagonalFrobeniusNorm(matrix) {  // Computes the "off-diagonal" Frobenius norm.  // Assumes matrix is symmetric.  let norm = 0.0;  for (let i = 0; i < 3; ++i) {    const temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])];    norm += 2.0 * temp * temp;  }  return Math.sqrt(norm);}function shurDecomposition(matrix, result) {  // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,  // section 8.4.2 The 2by2 Symmetric Schur Decomposition.  //  // The routine takes a matrix, which is assumed to be symmetric, and  // finds the largest off-diagonal term, and then creates  // a matrix (result) which can be used to help reduce it  const tolerance = CesiumMath.EPSILON15;  let maxDiagonal = 0.0;  let rotAxis = 1;  // find pivot (rotAxis) based on max diagonal of matrix  for (let i = 0; i < 3; ++i) {    const temp = Math.abs(      matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]    );    if (temp > maxDiagonal) {      rotAxis = i;      maxDiagonal = temp;    }  }  let c = 1.0;  let s = 0.0;  const p = rowVal[rotAxis];  const q = colVal[rotAxis];  if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) {    const qq = matrix[Matrix3.getElementIndex(q, q)];    const pp = matrix[Matrix3.getElementIndex(p, p)];    const qp = matrix[Matrix3.getElementIndex(q, p)];    const tau = (qq - pp) / 2.0 / qp;    let t;    if (tau < 0.0) {      t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau));    } else {      t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau));    }    c = 1.0 / Math.sqrt(1.0 + t * t);    s = t * c;  }  result = Matrix3.clone(Matrix3.IDENTITY, result);  result[Matrix3.getElementIndex(p, p)] = result[    Matrix3.getElementIndex(q, q)  ] = c;  result[Matrix3.getElementIndex(q, p)] = s;  result[Matrix3.getElementIndex(p, q)] = -s;  return result;}const jMatrix = new Matrix3();const jMatrixTranspose = new Matrix3();/** * Computes the eigenvectors and eigenvalues of a symmetric matrix. * <p> * Returns a diagonal matrix and unitary matrix such that: * <code>matrix = unitary matrix * diagonal matrix * transpose(unitary matrix)</code> * </p> * <p> * The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. * </p> * * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * const a = //... symetric matrix * const result = { *     unitary : new Cesium.Matrix3(), *     diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * const unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * const b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * const lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x;  // first eigenvalue * const v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3());          // first eigenvector * const c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3());        // equal to Cesium.Matrix3.multiplyByVector(a, v) */Matrix3.computeEigenDecomposition = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  //>>includeEnd('debug');  // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan,  // section 8.4.3 The Classical Jacobi Algorithm  const tolerance = CesiumMath.EPSILON20;  const maxSweeps = 10;  let count = 0;  let sweep = 0;  if (!defined(result)) {    result = {};  }  const unitaryMatrix = (result.unitary = Matrix3.clone(    Matrix3.IDENTITY,    result.unitary  ));  const diagMatrix = (result.diagonal = Matrix3.clone(matrix, result.diagonal));  const epsilon = tolerance * computeFrobeniusNorm(diagMatrix);  while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) {    shurDecomposition(diagMatrix, jMatrix);    Matrix3.transpose(jMatrix, jMatrixTranspose);    Matrix3.multiply(diagMatrix, jMatrix, diagMatrix);    Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix);    Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix);    if (++count > 2) {      ++sweep;      count = 0;    }  }  return result;};/** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.abs = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result[0] = Math.abs(matrix[0]);  result[1] = Math.abs(matrix[1]);  result[2] = Math.abs(matrix[2]);  result[3] = Math.abs(matrix[3]);  result[4] = Math.abs(matrix[4]);  result[5] = Math.abs(matrix[5]);  result[6] = Math.abs(matrix[6]);  result[7] = Math.abs(matrix[7]);  result[8] = Math.abs(matrix[8]);  return result;};/** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */Matrix3.determinant = function (matrix) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  //>>includeEnd('debug');  const m11 = matrix[0];  const m21 = matrix[3];  const m31 = matrix[6];  const m12 = matrix[1];  const m22 = matrix[4];  const m32 = matrix[7];  const m13 = matrix[2];  const m23 = matrix[5];  const m33 = matrix[8];  return (    m11 * (m22 * m33 - m23 * m32) +    m12 * (m23 * m31 - m21 * m33) +    m13 * (m21 * m32 - m22 * m31)  );};/** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */Matrix3.inverse = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const m11 = matrix[0];  const m21 = matrix[1];  const m31 = matrix[2];  const m12 = matrix[3];  const m22 = matrix[4];  const m32 = matrix[5];  const m13 = matrix[6];  const m23 = matrix[7];  const m33 = matrix[8];  const determinant = Matrix3.determinant(matrix);  //>>includeStart('debug', pragmas.debug);  if (Math.abs(determinant) <= CesiumMath.EPSILON15) {    throw new DeveloperError("matrix is not invertible");  }  //>>includeEnd('debug');  result[0] = m22 * m33 - m23 * m32;  result[1] = m23 * m31 - m21 * m33;  result[2] = m21 * m32 - m22 * m31;  result[3] = m13 * m32 - m12 * m33;  result[4] = m11 * m33 - m13 * m31;  result[5] = m12 * m31 - m11 * m32;  result[6] = m12 * m23 - m13 * m22;  result[7] = m13 * m21 - m11 * m23;  result[8] = m11 * m22 - m12 * m21;  const scale = 1.0 / determinant;  return Matrix3.multiplyByScalar(result, scale, result);};const scratchTransposeMatrix = new Matrix3();/** * Computes the inverse transpose of a matrix. * * @param {Matrix3} matrix The matrix to transpose and invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */Matrix3.inverseTranspose = function (matrix, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("matrix", matrix);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  return Matrix3.inverse(    Matrix3.transpose(matrix, scratchTransposeMatrix),    result  );};/** * Compares the provided matrices componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */Matrix3.equals = function (left, right) {  return (    left === right ||    (defined(left) &&      defined(right) &&      left[0] === right[0] &&      left[1] === right[1] &&      left[2] === right[2] &&      left[3] === right[3] &&      left[4] === right[4] &&      left[5] === right[5] &&      left[6] === right[6] &&      left[7] === right[7] &&      left[8] === right[8])  );};/** * Compares the provided matrices componentwise and returns * <code>true</code> if they are within the provided epsilon, * <code>false</code> otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */Matrix3.equalsEpsilon = function (left, right, epsilon) {  epsilon = defaultValue(epsilon, 0);  return (    left === right ||    (defined(left) &&      defined(right) &&      Math.abs(left[0] - right[0]) <= epsilon &&      Math.abs(left[1] - right[1]) <= epsilon &&      Math.abs(left[2] - right[2]) <= epsilon &&      Math.abs(left[3] - right[3]) <= epsilon &&      Math.abs(left[4] - right[4]) <= epsilon &&      Math.abs(left[5] - right[5]) <= epsilon &&      Math.abs(left[6] - right[6]) <= epsilon &&      Math.abs(left[7] - right[7]) <= epsilon &&      Math.abs(left[8] - right[8]) <= epsilon)  );};/** * An immutable Matrix3 instance initialized to the identity matrix. * * @type {Matrix3} * @constant */Matrix3.IDENTITY = Object.freeze(  new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0));/** * An immutable Matrix3 instance initialized to the zero matrix. * * @type {Matrix3} * @constant */Matrix3.ZERO = Object.freeze(  new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));/** * The index into Matrix3 for column 0, row 0. * * @type {Number} * @constant */Matrix3.COLUMN0ROW0 = 0;/** * The index into Matrix3 for column 0, row 1. * * @type {Number} * @constant */Matrix3.COLUMN0ROW1 = 1;/** * The index into Matrix3 for column 0, row 2. * * @type {Number} * @constant */Matrix3.COLUMN0ROW2 = 2;/** * The index into Matrix3 for column 1, row 0. * * @type {Number} * @constant */Matrix3.COLUMN1ROW0 = 3;/** * The index into Matrix3 for column 1, row 1. * * @type {Number} * @constant */Matrix3.COLUMN1ROW1 = 4;/** * The index into Matrix3 for column 1, row 2. * * @type {Number} * @constant */Matrix3.COLUMN1ROW2 = 5;/** * The index into Matrix3 for column 2, row 0. * * @type {Number} * @constant */Matrix3.COLUMN2ROW0 = 6;/** * The index into Matrix3 for column 2, row 1. * * @type {Number} * @constant */Matrix3.COLUMN2ROW1 = 7;/** * The index into Matrix3 for column 2, row 2. * * @type {Number} * @constant */Matrix3.COLUMN2ROW2 = 8;Object.defineProperties(Matrix3.prototype, {  /**   * Gets the number of items in the collection.   * @memberof Matrix3.prototype   *   * @type {Number}   */  length: {    get: function () {      return Matrix3.packedLength;    },  },});/** * Duplicates the provided Matrix3 instance. * * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */Matrix3.prototype.clone = function (result) {  return Matrix3.clone(this, result);};/** * Compares this matrix to the provided matrix componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */Matrix3.prototype.equals = function (right) {  return Matrix3.equals(this, right);};/** * @private */Matrix3.equalsArray = function (matrix, array, offset) {  return (    matrix[0] === array[offset] &&    matrix[1] === array[offset + 1] &&    matrix[2] === array[offset + 2] &&    matrix[3] === array[offset + 3] &&    matrix[4] === array[offset + 4] &&    matrix[5] === array[offset + 5] &&    matrix[6] === array[offset + 6] &&    matrix[7] === array[offset + 7] &&    matrix[8] === array[offset + 8]  );};/** * Compares this matrix to the provided matrix componentwise and returns * <code>true</code> if they are within the provided epsilon, * <code>false</code> otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise. */Matrix3.prototype.equalsEpsilon = function (right, epsilon) {  return Matrix3.equalsEpsilon(this, right, epsilon);};/** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'. */Matrix3.prototype.toString = function () {  return (    `(${this[0]}, ${this[3]}, ${this[6]})\n` +    `(${this[1]}, ${this[4]}, ${this[7]})\n` +    `(${this[2]}, ${this[5]}, ${this[8]})`  );};export default Matrix3;
 |