| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 | import ArcType from "./ArcType.js";import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";import BoundingSphere from "./BoundingSphere.js";import Cartesian3 from "./Cartesian3.js";import Color from "./Color.js";import ComponentDatatype from "./ComponentDatatype.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Ellipsoid from "./Ellipsoid.js";import Geometry from "./Geometry.js";import GeometryAttribute from "./GeometryAttribute.js";import GeometryAttributes from "./GeometryAttributes.js";import GeometryType from "./GeometryType.js";import IndexDatatype from "./IndexDatatype.js";import CesiumMath from "./Math.js";import PolylinePipeline from "./PolylinePipeline.js";import PrimitiveType from "./PrimitiveType.js";import VertexFormat from "./VertexFormat.js";const scratchInterpolateColorsArray = [];function interpolateColors(p0, p1, color0, color1, numPoints) {  const colors = scratchInterpolateColorsArray;  colors.length = numPoints;  let i;  const r0 = color0.red;  const g0 = color0.green;  const b0 = color0.blue;  const a0 = color0.alpha;  const r1 = color1.red;  const g1 = color1.green;  const b1 = color1.blue;  const a1 = color1.alpha;  if (Color.equals(color0, color1)) {    for (i = 0; i < numPoints; i++) {      colors[i] = Color.clone(color0);    }    return colors;  }  const redPerVertex = (r1 - r0) / numPoints;  const greenPerVertex = (g1 - g0) / numPoints;  const bluePerVertex = (b1 - b0) / numPoints;  const alphaPerVertex = (a1 - a0) / numPoints;  for (i = 0; i < numPoints; i++) {    colors[i] = new Color(      r0 + i * redPerVertex,      g0 + i * greenPerVertex,      b0 + i * bluePerVertex,      a0 + i * alphaPerVertex    );  }  return colors;}/** * A description of a polyline modeled as a line strip; the first two positions define a line segment, * and each additional position defines a line segment from the previous position. The polyline is capable of * displaying with a material. * * @alias PolylineGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip. * @param {Number} [options.width=1.0] The width in pixels. * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors. * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @exception {DeveloperError} At least two positions are required. * @exception {DeveloperError} width must be greater than or equal to one. * @exception {DeveloperError} colors has an invalid length. * * @see PolylineGeometry#createGeometry * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo} * * @example * // A polyline with two connected line segments * const polyline = new Cesium.PolylineGeometry({ *   positions : Cesium.Cartesian3.fromDegreesArray([ *     0.0, 0.0, *     5.0, 0.0, *     5.0, 5.0 *   ]), *   width : 10.0 * }); * const geometry = Cesium.PolylineGeometry.createGeometry(polyline); */function PolylineGeometry(options) {  options = defaultValue(options, defaultValue.EMPTY_OBJECT);  const positions = options.positions;  const colors = options.colors;  const width = defaultValue(options.width, 1.0);  const colorsPerVertex = defaultValue(options.colorsPerVertex, false);  //>>includeStart('debug', pragmas.debug);  if (!defined(positions) || positions.length < 2) {    throw new DeveloperError("At least two positions are required.");  }  if (typeof width !== "number") {    throw new DeveloperError("width must be a number");  }  if (    defined(colors) &&    ((colorsPerVertex && colors.length < positions.length) ||      (!colorsPerVertex && colors.length < positions.length - 1))  ) {    throw new DeveloperError("colors has an invalid length.");  }  //>>includeEnd('debug');  this._positions = positions;  this._colors = colors;  this._width = width;  this._colorsPerVertex = colorsPerVertex;  this._vertexFormat = VertexFormat.clone(    defaultValue(options.vertexFormat, VertexFormat.DEFAULT)  );  this._arcType = defaultValue(options.arcType, ArcType.GEODESIC);  this._granularity = defaultValue(    options.granularity,    CesiumMath.RADIANS_PER_DEGREE  );  this._ellipsoid = Ellipsoid.clone(    defaultValue(options.ellipsoid, Ellipsoid.WGS84)  );  this._workerName = "createPolylineGeometry";  let numComponents = 1 + positions.length * Cartesian3.packedLength;  numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1;  /**   * The number of elements used to pack the object into an array.   * @type {Number}   */  this.packedLength =    numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 4;}/** * Stores the provided instance into the provided array. * * @param {PolylineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */PolylineGeometry.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required");  }  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  let i;  const positions = value._positions;  let length = positions.length;  array[startingIndex++] = length;  for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {    Cartesian3.pack(positions[i], array, startingIndex);  }  const colors = value._colors;  length = defined(colors) ? colors.length : 0.0;  array[startingIndex++] = length;  for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {    Color.pack(colors[i], array, startingIndex);  }  Ellipsoid.pack(value._ellipsoid, array, startingIndex);  startingIndex += Ellipsoid.packedLength;  VertexFormat.pack(value._vertexFormat, array, startingIndex);  startingIndex += VertexFormat.packedLength;  array[startingIndex++] = value._width;  array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;  array[startingIndex++] = value._arcType;  array[startingIndex] = value._granularity;  return array;};const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);const scratchVertexFormat = new VertexFormat();const scratchOptions = {  positions: undefined,  colors: undefined,  ellipsoid: scratchEllipsoid,  vertexFormat: scratchVertexFormat,  width: undefined,  colorsPerVertex: undefined,  arcType: undefined,  granularity: undefined,};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolylineGeometry} [result] The object into which to store the result. * @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided. */PolylineGeometry.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  let i;  let length = array[startingIndex++];  const positions = new Array(length);  for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {    positions[i] = Cartesian3.unpack(array, startingIndex);  }  length = array[startingIndex++];  const colors = length > 0 ? new Array(length) : undefined;  for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {    colors[i] = Color.unpack(array, startingIndex);  }  const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);  startingIndex += Ellipsoid.packedLength;  const vertexFormat = VertexFormat.unpack(    array,    startingIndex,    scratchVertexFormat  );  startingIndex += VertexFormat.packedLength;  const width = array[startingIndex++];  const colorsPerVertex = array[startingIndex++] === 1.0;  const arcType = array[startingIndex++];  const granularity = array[startingIndex];  if (!defined(result)) {    scratchOptions.positions = positions;    scratchOptions.colors = colors;    scratchOptions.width = width;    scratchOptions.colorsPerVertex = colorsPerVertex;    scratchOptions.arcType = arcType;    scratchOptions.granularity = granularity;    return new PolylineGeometry(scratchOptions);  }  result._positions = positions;  result._colors = colors;  result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);  result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);  result._width = width;  result._colorsPerVertex = colorsPerVertex;  result._arcType = arcType;  result._granularity = granularity;  return result;};const scratchCartesian3 = new Cartesian3();const scratchPosition = new Cartesian3();const scratchPrevPosition = new Cartesian3();const scratchNextPosition = new Cartesian3();/** * Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere. * * @param {PolylineGeometry} polylineGeometry A description of the polyline. * @returns {Geometry|undefined} The computed vertices and indices. */PolylineGeometry.createGeometry = function (polylineGeometry) {  const width = polylineGeometry._width;  const vertexFormat = polylineGeometry._vertexFormat;  let colors = polylineGeometry._colors;  const colorsPerVertex = polylineGeometry._colorsPerVertex;  const arcType = polylineGeometry._arcType;  const granularity = polylineGeometry._granularity;  const ellipsoid = polylineGeometry._ellipsoid;  let i;  let j;  let k;  const removedIndices = [];  let positions = arrayRemoveDuplicates(    polylineGeometry._positions,    Cartesian3.equalsEpsilon,    false,    removedIndices  );  if (defined(colors) && removedIndices.length > 0) {    let removedArrayIndex = 0;    let nextRemovedIndex = removedIndices[0];    colors = colors.filter(function (color, index) {      let remove = false;      if (colorsPerVertex) {        remove =          index === nextRemovedIndex || (index === 0 && nextRemovedIndex === 1);      } else {        remove = index + 1 === nextRemovedIndex;      }      if (remove) {        removedArrayIndex++;        nextRemovedIndex = removedIndices[removedArrayIndex];        return false;      }      return true;    });  }  let positionsLength = positions.length;  // A width of a pixel or less is not a valid geometry, but in order to support external data  // that may have errors we treat this as an empty geometry.  if (positionsLength < 2 || width <= 0.0) {    return undefined;  }  if (arcType === ArcType.GEODESIC || arcType === ArcType.RHUMB) {    let subdivisionSize;    let numberOfPointsFunction;    if (arcType === ArcType.GEODESIC) {      subdivisionSize = CesiumMath.chordLength(        granularity,        ellipsoid.maximumRadius      );      numberOfPointsFunction = PolylinePipeline.numberOfPoints;    } else {      subdivisionSize = granularity;      numberOfPointsFunction = PolylinePipeline.numberOfPointsRhumbLine;    }    const heights = PolylinePipeline.extractHeights(positions, ellipsoid);    if (defined(colors)) {      let colorLength = 1;      for (i = 0; i < positionsLength - 1; ++i) {        colorLength += numberOfPointsFunction(          positions[i],          positions[i + 1],          subdivisionSize        );      }      const newColors = new Array(colorLength);      let newColorIndex = 0;      for (i = 0; i < positionsLength - 1; ++i) {        const p0 = positions[i];        const p1 = positions[i + 1];        const c0 = colors[i];        const numColors = numberOfPointsFunction(p0, p1, subdivisionSize);        if (colorsPerVertex && i < colorLength) {          const c1 = colors[i + 1];          const interpolatedColors = interpolateColors(            p0,            p1,            c0,            c1,            numColors          );          const interpolatedColorsLength = interpolatedColors.length;          for (j = 0; j < interpolatedColorsLength; ++j) {            newColors[newColorIndex++] = interpolatedColors[j];          }        } else {          for (j = 0; j < numColors; ++j) {            newColors[newColorIndex++] = Color.clone(c0);          }        }      }      newColors[newColorIndex] = Color.clone(colors[colors.length - 1]);      colors = newColors;      scratchInterpolateColorsArray.length = 0;    }    if (arcType === ArcType.GEODESIC) {      positions = PolylinePipeline.generateCartesianArc({        positions: positions,        minDistance: subdivisionSize,        ellipsoid: ellipsoid,        height: heights,      });    } else {      positions = PolylinePipeline.generateCartesianRhumbArc({        positions: positions,        granularity: subdivisionSize,        ellipsoid: ellipsoid,        height: heights,      });    }  }  positionsLength = positions.length;  const size = positionsLength * 4.0 - 4.0;  const finalPositions = new Float64Array(size * 3);  const prevPositions = new Float64Array(size * 3);  const nextPositions = new Float64Array(size * 3);  const expandAndWidth = new Float32Array(size * 2);  const st = vertexFormat.st ? new Float32Array(size * 2) : undefined;  const finalColors = defined(colors) ? new Uint8Array(size * 4) : undefined;  let positionIndex = 0;  let expandAndWidthIndex = 0;  let stIndex = 0;  let colorIndex = 0;  let position;  for (j = 0; j < positionsLength; ++j) {    if (j === 0) {      position = scratchCartesian3;      Cartesian3.subtract(positions[0], positions[1], position);      Cartesian3.add(positions[0], position, position);    } else {      position = positions[j - 1];    }    Cartesian3.clone(position, scratchPrevPosition);    Cartesian3.clone(positions[j], scratchPosition);    if (j === positionsLength - 1) {      position = scratchCartesian3;      Cartesian3.subtract(        positions[positionsLength - 1],        positions[positionsLength - 2],        position      );      Cartesian3.add(positions[positionsLength - 1], position, position);    } else {      position = positions[j + 1];    }    Cartesian3.clone(position, scratchNextPosition);    let color0, color1;    if (defined(finalColors)) {      if (j !== 0 && !colorsPerVertex) {        color0 = colors[j - 1];      } else {        color0 = colors[j];      }      if (j !== positionsLength - 1) {        color1 = colors[j];      }    }    const startK = j === 0 ? 2 : 0;    const endK = j === positionsLength - 1 ? 2 : 4;    for (k = startK; k < endK; ++k) {      Cartesian3.pack(scratchPosition, finalPositions, positionIndex);      Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex);      Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex);      positionIndex += 3;      const direction = k - 2 < 0 ? -1.0 : 1.0;      expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction      expandAndWidth[expandAndWidthIndex++] = direction * width;      if (vertexFormat.st) {        st[stIndex++] = j / (positionsLength - 1);        st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0);      }      if (defined(finalColors)) {        const color = k < 2 ? color0 : color1;        finalColors[colorIndex++] = Color.floatToByte(color.red);        finalColors[colorIndex++] = Color.floatToByte(color.green);        finalColors[colorIndex++] = Color.floatToByte(color.blue);        finalColors[colorIndex++] = Color.floatToByte(color.alpha);      }    }  }  const attributes = new GeometryAttributes();  attributes.position = new GeometryAttribute({    componentDatatype: ComponentDatatype.DOUBLE,    componentsPerAttribute: 3,    values: finalPositions,  });  attributes.prevPosition = new GeometryAttribute({    componentDatatype: ComponentDatatype.DOUBLE,    componentsPerAttribute: 3,    values: prevPositions,  });  attributes.nextPosition = new GeometryAttribute({    componentDatatype: ComponentDatatype.DOUBLE,    componentsPerAttribute: 3,    values: nextPositions,  });  attributes.expandAndWidth = new GeometryAttribute({    componentDatatype: ComponentDatatype.FLOAT,    componentsPerAttribute: 2,    values: expandAndWidth,  });  if (vertexFormat.st) {    attributes.st = new GeometryAttribute({      componentDatatype: ComponentDatatype.FLOAT,      componentsPerAttribute: 2,      values: st,    });  }  if (defined(finalColors)) {    attributes.color = new GeometryAttribute({      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,      componentsPerAttribute: 4,      values: finalColors,      normalize: true,    });  }  const indices = IndexDatatype.createTypedArray(size, positionsLength * 6 - 6);  let index = 0;  let indicesIndex = 0;  const length = positionsLength - 1.0;  for (j = 0; j < length; ++j) {    indices[indicesIndex++] = index;    indices[indicesIndex++] = index + 2;    indices[indicesIndex++] = index + 1;    indices[indicesIndex++] = index + 1;    indices[indicesIndex++] = index + 2;    indices[indicesIndex++] = index + 3;    index += 4;  }  return new Geometry({    attributes: attributes,    indices: indices,    primitiveType: PrimitiveType.TRIANGLES,    boundingSphere: BoundingSphere.fromPoints(positions),    geometryType: GeometryType.POLYLINES,  });};export default PolylineGeometry;
 |