| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 | import ArcType from "./ArcType.js";import BoundingSphere from "./BoundingSphere.js";import Cartesian3 from "./Cartesian3.js";import Color from "./Color.js";import ComponentDatatype from "./ComponentDatatype.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Ellipsoid from "./Ellipsoid.js";import Geometry from "./Geometry.js";import GeometryAttribute from "./GeometryAttribute.js";import GeometryAttributes from "./GeometryAttributes.js";import IndexDatatype from "./IndexDatatype.js";import CesiumMath from "./Math.js";import PolylinePipeline from "./PolylinePipeline.js";import PrimitiveType from "./PrimitiveType.js";function interpolateColors(p0, p1, color0, color1, minDistance, array, offset) {  const numPoints = PolylinePipeline.numberOfPoints(p0, p1, minDistance);  let i;  const r0 = color0.red;  const g0 = color0.green;  const b0 = color0.blue;  const a0 = color0.alpha;  const r1 = color1.red;  const g1 = color1.green;  const b1 = color1.blue;  const a1 = color1.alpha;  if (Color.equals(color0, color1)) {    for (i = 0; i < numPoints; i++) {      array[offset++] = Color.floatToByte(r0);      array[offset++] = Color.floatToByte(g0);      array[offset++] = Color.floatToByte(b0);      array[offset++] = Color.floatToByte(a0);    }    return offset;  }  const redPerVertex = (r1 - r0) / numPoints;  const greenPerVertex = (g1 - g0) / numPoints;  const bluePerVertex = (b1 - b0) / numPoints;  const alphaPerVertex = (a1 - a0) / numPoints;  let index = offset;  for (i = 0; i < numPoints; i++) {    array[index++] = Color.floatToByte(r0 + i * redPerVertex);    array[index++] = Color.floatToByte(g0 + i * greenPerVertex);    array[index++] = Color.floatToByte(b0 + i * bluePerVertex);    array[index++] = Color.floatToByte(a0 + i * alphaPerVertex);  }  return index;}/** * A description of a polyline modeled as a line strip; the first two positions define a line segment, * and each additional position defines a line segment from the previous position. * * @alias SimplePolylineGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip. * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors. * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @exception {DeveloperError} At least two positions are required. * @exception {DeveloperError} colors has an invalid length. * * @see SimplePolylineGeometry#createGeometry * * @example * // A polyline with two connected line segments * const polyline = new Cesium.SimplePolylineGeometry({ *   positions : Cesium.Cartesian3.fromDegreesArray([ *     0.0, 0.0, *     5.0, 0.0, *     5.0, 5.0 *   ]) * }); * const geometry = Cesium.SimplePolylineGeometry.createGeometry(polyline); */function SimplePolylineGeometry(options) {  options = defaultValue(options, defaultValue.EMPTY_OBJECT);  const positions = options.positions;  const colors = options.colors;  const colorsPerVertex = defaultValue(options.colorsPerVertex, false);  //>>includeStart('debug', pragmas.debug);  if (!defined(positions) || positions.length < 2) {    throw new DeveloperError("At least two positions are required.");  }  if (    defined(colors) &&    ((colorsPerVertex && colors.length < positions.length) ||      (!colorsPerVertex && colors.length < positions.length - 1))  ) {    throw new DeveloperError("colors has an invalid length.");  }  //>>includeEnd('debug');  this._positions = positions;  this._colors = colors;  this._colorsPerVertex = colorsPerVertex;  this._arcType = defaultValue(options.arcType, ArcType.GEODESIC);  this._granularity = defaultValue(    options.granularity,    CesiumMath.RADIANS_PER_DEGREE  );  this._ellipsoid = defaultValue(options.ellipsoid, Ellipsoid.WGS84);  this._workerName = "createSimplePolylineGeometry";  let numComponents = 1 + positions.length * Cartesian3.packedLength;  numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1;  /**   * The number of elements used to pack the object into an array.   * @type {Number}   */  this.packedLength = numComponents + Ellipsoid.packedLength + 3;}/** * Stores the provided instance into the provided array. * * @param {SimplePolylineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */SimplePolylineGeometry.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required");  }  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  let i;  const positions = value._positions;  let length = positions.length;  array[startingIndex++] = length;  for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {    Cartesian3.pack(positions[i], array, startingIndex);  }  const colors = value._colors;  length = defined(colors) ? colors.length : 0.0;  array[startingIndex++] = length;  for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {    Color.pack(colors[i], array, startingIndex);  }  Ellipsoid.pack(value._ellipsoid, array, startingIndex);  startingIndex += Ellipsoid.packedLength;  array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;  array[startingIndex++] = value._arcType;  array[startingIndex] = value._granularity;  return array;};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {SimplePolylineGeometry} [result] The object into which to store the result. * @returns {SimplePolylineGeometry} The modified result parameter or a new SimplePolylineGeometry instance if one was not provided. */SimplePolylineGeometry.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  let i;  let length = array[startingIndex++];  const positions = new Array(length);  for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {    positions[i] = Cartesian3.unpack(array, startingIndex);  }  length = array[startingIndex++];  const colors = length > 0 ? new Array(length) : undefined;  for (i = 0; i < length; ++i, startingIndex += Color.packedLength) {    colors[i] = Color.unpack(array, startingIndex);  }  const ellipsoid = Ellipsoid.unpack(array, startingIndex);  startingIndex += Ellipsoid.packedLength;  const colorsPerVertex = array[startingIndex++] === 1.0;  const arcType = array[startingIndex++];  const granularity = array[startingIndex];  if (!defined(result)) {    return new SimplePolylineGeometry({      positions: positions,      colors: colors,      ellipsoid: ellipsoid,      colorsPerVertex: colorsPerVertex,      arcType: arcType,      granularity: granularity,    });  }  result._positions = positions;  result._colors = colors;  result._ellipsoid = ellipsoid;  result._colorsPerVertex = colorsPerVertex;  result._arcType = arcType;  result._granularity = granularity;  return result;};const scratchArray1 = new Array(2);const scratchArray2 = new Array(2);const generateArcOptionsScratch = {  positions: scratchArray1,  height: scratchArray2,  ellipsoid: undefined,  minDistance: undefined,  granularity: undefined,};/** * Computes the geometric representation of a simple polyline, including its vertices, indices, and a bounding sphere. * * @param {SimplePolylineGeometry} simplePolylineGeometry A description of the polyline. * @returns {Geometry|undefined} The computed vertices and indices. */SimplePolylineGeometry.createGeometry = function (simplePolylineGeometry) {  const positions = simplePolylineGeometry._positions;  const colors = simplePolylineGeometry._colors;  const colorsPerVertex = simplePolylineGeometry._colorsPerVertex;  const arcType = simplePolylineGeometry._arcType;  const granularity = simplePolylineGeometry._granularity;  const ellipsoid = simplePolylineGeometry._ellipsoid;  const minDistance = CesiumMath.chordLength(    granularity,    ellipsoid.maximumRadius  );  const perSegmentColors = defined(colors) && !colorsPerVertex;  let i;  const length = positions.length;  let positionValues;  let numberOfPositions;  let colorValues;  let color;  let offset = 0;  if (arcType === ArcType.GEODESIC || arcType === ArcType.RHUMB) {    let subdivisionSize;    let numberOfPointsFunction;    let generateArcFunction;    if (arcType === ArcType.GEODESIC) {      subdivisionSize = CesiumMath.chordLength(        granularity,        ellipsoid.maximumRadius      );      numberOfPointsFunction = PolylinePipeline.numberOfPoints;      generateArcFunction = PolylinePipeline.generateArc;    } else {      subdivisionSize = granularity;      numberOfPointsFunction = PolylinePipeline.numberOfPointsRhumbLine;      generateArcFunction = PolylinePipeline.generateRhumbArc;    }    const heights = PolylinePipeline.extractHeights(positions, ellipsoid);    const generateArcOptions = generateArcOptionsScratch;    if (arcType === ArcType.GEODESIC) {      generateArcOptions.minDistance = minDistance;    } else {      generateArcOptions.granularity = granularity;    }    generateArcOptions.ellipsoid = ellipsoid;    if (perSegmentColors) {      let positionCount = 0;      for (i = 0; i < length - 1; i++) {        positionCount +=          numberOfPointsFunction(            positions[i],            positions[i + 1],            subdivisionSize          ) + 1;      }      positionValues = new Float64Array(positionCount * 3);      colorValues = new Uint8Array(positionCount * 4);      generateArcOptions.positions = scratchArray1;      generateArcOptions.height = scratchArray2;      let ci = 0;      for (i = 0; i < length - 1; ++i) {        scratchArray1[0] = positions[i];        scratchArray1[1] = positions[i + 1];        scratchArray2[0] = heights[i];        scratchArray2[1] = heights[i + 1];        const pos = generateArcFunction(generateArcOptions);        if (defined(colors)) {          const segLen = pos.length / 3;          color = colors[i];          for (let k = 0; k < segLen; ++k) {            colorValues[ci++] = Color.floatToByte(color.red);            colorValues[ci++] = Color.floatToByte(color.green);            colorValues[ci++] = Color.floatToByte(color.blue);            colorValues[ci++] = Color.floatToByte(color.alpha);          }        }        positionValues.set(pos, offset);        offset += pos.length;      }    } else {      generateArcOptions.positions = positions;      generateArcOptions.height = heights;      positionValues = new Float64Array(        generateArcFunction(generateArcOptions)      );      if (defined(colors)) {        colorValues = new Uint8Array((positionValues.length / 3) * 4);        for (i = 0; i < length - 1; ++i) {          const p0 = positions[i];          const p1 = positions[i + 1];          const c0 = colors[i];          const c1 = colors[i + 1];          offset = interpolateColors(            p0,            p1,            c0,            c1,            minDistance,            colorValues,            offset          );        }        const lastColor = colors[length - 1];        colorValues[offset++] = Color.floatToByte(lastColor.red);        colorValues[offset++] = Color.floatToByte(lastColor.green);        colorValues[offset++] = Color.floatToByte(lastColor.blue);        colorValues[offset++] = Color.floatToByte(lastColor.alpha);      }    }  } else {    numberOfPositions = perSegmentColors ? length * 2 - 2 : length;    positionValues = new Float64Array(numberOfPositions * 3);    colorValues = defined(colors)      ? new Uint8Array(numberOfPositions * 4)      : undefined;    let positionIndex = 0;    let colorIndex = 0;    for (i = 0; i < length; ++i) {      const p = positions[i];      if (perSegmentColors && i > 0) {        Cartesian3.pack(p, positionValues, positionIndex);        positionIndex += 3;        color = colors[i - 1];        colorValues[colorIndex++] = Color.floatToByte(color.red);        colorValues[colorIndex++] = Color.floatToByte(color.green);        colorValues[colorIndex++] = Color.floatToByte(color.blue);        colorValues[colorIndex++] = Color.floatToByte(color.alpha);      }      if (perSegmentColors && i === length - 1) {        break;      }      Cartesian3.pack(p, positionValues, positionIndex);      positionIndex += 3;      if (defined(colors)) {        color = colors[i];        colorValues[colorIndex++] = Color.floatToByte(color.red);        colorValues[colorIndex++] = Color.floatToByte(color.green);        colorValues[colorIndex++] = Color.floatToByte(color.blue);        colorValues[colorIndex++] = Color.floatToByte(color.alpha);      }    }  }  const attributes = new GeometryAttributes();  attributes.position = new GeometryAttribute({    componentDatatype: ComponentDatatype.DOUBLE,    componentsPerAttribute: 3,    values: positionValues,  });  if (defined(colors)) {    attributes.color = new GeometryAttribute({      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,      componentsPerAttribute: 4,      values: colorValues,      normalize: true,    });  }  numberOfPositions = positionValues.length / 3;  const numberOfIndices = (numberOfPositions - 1) * 2;  const indices = IndexDatatype.createTypedArray(    numberOfPositions,    numberOfIndices  );  let index = 0;  for (i = 0; i < numberOfPositions - 1; ++i) {    indices[index++] = i;    indices[index++] = i + 1;  }  return new Geometry({    attributes: attributes,    indices: indices,    primitiveType: PrimitiveType.LINES,    boundingSphere: BoundingSphere.fromPoints(positions),  });};export default SimplePolylineGeometry;
 |