| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 | //This file is automatically rebuilt by the Cesium build process.export default "uniform sampler2D u_noiseTexture;\n\uniform vec3 u_noiseTextureDimensions;\n\uniform float u_noiseDetail;\n\varying vec2 v_offset;\n\varying vec3 v_maximumSize;\n\varying vec4 v_color;\n\varying float v_slice;\n\varying float v_brightness;\n\\n\float wrap(float value, float rangeLength) {\n\    if(value < 0.0) {\n\        float absValue = abs(value);\n\        float modValue = mod(absValue, rangeLength);\n\        return mod(rangeLength - modValue, rangeLength);\n\    }\n\    return mod(value, rangeLength);\n\}\n\\n\vec3 wrapVec(vec3 value, float rangeLength) {\n\    return vec3(wrap(value.x, rangeLength),\n\                wrap(value.y, rangeLength),\n\                wrap(value.z, rangeLength));\n\}\n\\n\float textureSliceWidth = u_noiseTextureDimensions.x;\n\float noiseTextureRows = u_noiseTextureDimensions.y;\n\float inverseNoiseTextureRows = u_noiseTextureDimensions.z;\n\\n\float textureSliceWidthSquared = textureSliceWidth * textureSliceWidth;\n\vec2 inverseNoiseTextureDimensions = vec2(noiseTextureRows / textureSliceWidthSquared,\n\                                          inverseNoiseTextureRows / textureSliceWidth);\n\\n\vec2 voxelToUV(vec3 voxelIndex) {\n\    vec3 wrappedIndex = wrapVec(voxelIndex, textureSliceWidth);\n\    float column = mod(wrappedIndex.z, textureSliceWidth * inverseNoiseTextureRows);\n\    float row = floor(wrappedIndex.z / textureSliceWidth * noiseTextureRows);\n\\n\    float xPixelCoord = wrappedIndex.x + column * textureSliceWidth;\n\    float yPixelCoord = wrappedIndex.y + row * textureSliceWidth;\n\    return vec2(xPixelCoord, yPixelCoord) * inverseNoiseTextureDimensions;\n\}\n\\n\// Interpolate a voxel with its neighbor (along the positive X-axis)\n\vec4 lerpSamplesX(vec3 voxelIndex, float x) {\n\    vec2 uv0 = voxelToUV(voxelIndex);\n\    vec2 uv1 = voxelToUV(voxelIndex + vec3(1.0, 0.0, 0.0));\n\    vec4 sample0 = texture2D(u_noiseTexture, uv0);\n\    vec4 sample1 = texture2D(u_noiseTexture, uv1);\n\    return mix(sample0, sample1, x);\n\}\n\\n\vec4 sampleNoiseTexture(vec3 position) {\n\    vec3 recenteredPos = position + vec3(textureSliceWidth / 2.0);\n\    vec3 lerpValue = fract(recenteredPos);\n\    vec3 voxelIndex = floor(recenteredPos);\n\\n\    vec4 xLerp00 = lerpSamplesX(voxelIndex, lerpValue.x);\n\    vec4 xLerp01 = lerpSamplesX(voxelIndex + vec3(0.0, 0.0, 1.0), lerpValue.x);\n\    vec4 xLerp10 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 0.0), lerpValue.x);\n\    vec4 xLerp11 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 1.0), lerpValue.x);\n\\n\    vec4 yLerp0 = mix(xLerp00, xLerp10, lerpValue.y);\n\    vec4 yLerp1 = mix(xLerp01, xLerp11, lerpValue.y);\n\    return mix(yLerp0, yLerp1, lerpValue.z);\n\}\n\\n\// Intersection with a unit sphere with radius 0.5 at center (0, 0, 0).\n\bool intersectSphere(vec3 origin, vec3 dir, float slice,\n\                     out vec3 point, out vec3 normal) {\n\    float A = dot(dir, dir);\n\    float B = dot(origin, dir);\n\    float C = dot(origin, origin) - 0.25;\n\    float discriminant = (B * B) - (A * C);\n\    if(discriminant < 0.0) {\n\        return false;\n\    }\n\    float root = sqrt(discriminant);\n\    float t = (-B - root) / A;\n\    if(t < 0.0) {\n\        t = (-B + root) / A;\n\    }\n\    point = origin + t * dir;\n\\n\    if(slice >= 0.0) {\n\        point.z = (slice / 2.0) - 0.5;\n\        if(length(point) > 0.5) {\n\            return false;\n\        }\n\    }\n\\n\    normal = normalize(point);\n\    point -= czm_epsilon2 * normal;\n\    return true;\n\}\n\\n\// Transforms the ray origin and direction into unit sphere space,\n\// then transforms the result back into the ellipsoid's space.\n\bool intersectEllipsoid(vec3 origin, vec3 dir, vec3 center, vec3 scale, float slice,\n\                        out vec3 point, out vec3 normal) {\n\    if(scale.x <= 0.01 || scale.y < 0.01 || scale.z < 0.01) {\n\        return false;\n\    }\n\\n\    vec3 o = (origin - center) / scale;\n\    vec3 d = dir / scale;\n\    vec3 p, n;\n\    bool intersected = intersectSphere(o, d, slice, p, n);\n\    if(intersected) {\n\        point = (p * scale) + center;\n\        normal = n;\n\    }\n\    return intersected;\n\}\n\\n\// Assume that if phase shift is being called for octave i,\n\// the frequency is of i - 1. This saves us from doing extra\n\// division / multiplication operations.\n\vec2 phaseShift2D(vec2 p, vec2 freq) {\n\    return (czm_pi / 2.0) * sin(freq.yx * p.yx);\n\}\n\\n\vec2 phaseShift3D(vec3 p, vec2 freq) {\n\    return phaseShift2D(p.xy, freq) + czm_pi * vec2(sin(freq.x * p.z));\n\}\n\\n\// The cloud texture function derived from Gardner's 1985 paper,\n\// \"Visual Simulation of Clouds.\"\n\// https://www.cs.drexel.edu/~david/Classes/Papers/p297-gardner.pdf\n\const float T0    = 0.6;  // contrast of the texture pattern\n\const float k     = 0.1;  // computed to produce a maximum value of 1\n\const float C0    = 0.8;  // coefficient\n\const float FX0   = 0.6;  // frequency X\n\const float FY0   = 0.6;  // frequency Y\n\const int octaves = 5;\n\\n\float T(vec3 point) {\n\    vec2 sum = vec2(0.0);\n\    float Ci = C0;\n\    vec2 FXY = vec2(FX0, FY0);\n\    vec2 PXY = vec2(0.0);\n\    for(int i = 1; i <= octaves; i++) {\n\        PXY = phaseShift3D(point, FXY);\n\        Ci *= 0.707;\n\        FXY *= 2.0;\n\        vec2 sinTerm = sin(FXY * point.xy + PXY);\n\        sum += Ci * sinTerm + vec2(T0);\n\    }\n\    return k * sum.x * sum.y;\n\}\n\\n\const float a = 0.5;  // fraction of surface reflection due to ambient or scattered light,\n\const float t = 0.4;  // fraction of texture shading\n\const float s = 0.25; // fraction of specular reflection\n\\n\float I(float Id, float Is, float It) {\n\    return (1.0 - a) * ((1.0 - t) * ((1.0 - s) * Id + s * Is) + t * It) + a;\n\}\n\\n\const vec3 lightDir = normalize(vec3(0.2, -1.0, 0.7));\n\\n\vec4 drawCloud(vec3 rayOrigin, vec3 rayDir, vec3 cloudCenter, vec3 cloudScale, float cloudSlice,\n\               float brightness) {\n\    vec3 cloudPoint, cloudNormal;\n\    if(!intersectEllipsoid(rayOrigin, rayDir, cloudCenter, cloudScale, cloudSlice,\n\                            cloudPoint, cloudNormal)) {\n\        return vec4(0.0);\n\    }\n\\n\    float Id = clamp(dot(cloudNormal, -lightDir), 0.0, 1.0);  // diffuse reflection\n\    float Is = max(pow(dot(-lightDir, -rayDir), 2.0), 0.0);   // specular reflection\n\    float It = T(cloudPoint);                                 // texture function\n\    float intensity = I(Id, Is, It);\n\    vec3 color = vec3(intensity * clamp(brightness, 0.1, 1.0));\n\\n\    vec4 noise = sampleNoiseTexture(u_noiseDetail * cloudPoint);\n\    float W = noise.x;\n\    float W2 = noise.y;\n\    float W3 = noise.z;\n\\n\    // The dot product between the cloud's normal and the ray's direction is greatest\n\    // in the center of the ellipsoid's surface. It decreases towards the edge.\n\    // Thus, it is used to blur the areas leading to the edges of the ellipsoid,\n\    // so that no harsh lines appear.\n\\n\    // The first (and biggest) layer of worley noise is then subtracted from this.\n\    // The final result is scaled up so that the base cloud is not too translucent.\n\    float ndDot = clamp(dot(cloudNormal, -rayDir), 0.0, 1.0);\n\    float TR = pow(ndDot, 3.0) - W; // translucency\n\    TR *= 1.3;\n\\n\    // Subtracting the second and third layers of worley noise is more complicated.\n\    // If these layers of noise were simply subtracted from the current translucency,\n\    // the shape derived from the first layer of noise would be completely deleted.\n\    // The erosion of this noise should thus be constricted to the edges of the cloud.\n\    // However, because the edges of the ellipsoid were already blurred away, mapping\n\    // the noise to (1.0 - ndDot) will have no impact on most of the cloud's appearance.\n\    // The value of (0.5 - ndDot) provides the best compromise.\n\    float minusDot = 0.5 - ndDot;\n\\n\    // Even with the previous calculation, subtracting the second layer of wnoise\n\    // erode too much of the cloud. The addition of it, however, will detailed\n\    // volume to the cloud. As long as the noise is only added and not subtracted,\n\    // the results are aesthetically pleasing.\n\\n\    // The minusDot product is mapped in a way that it is larger at the edges of\n\    // the ellipsoid, so a subtraction and min operation are used instead of\n\    // an addition and max one.\n\    TR -= min(minusDot * W2, 0.0);\n\\n\    // The third level of worley noise is subtracted from the result, with some\n\    // modifications. First, a scalar is added to minusDot so that the noise\n\    // starts affecting the shape farther away from the center of the ellipsoid's\n\    // surface. Then, it is scaled down so its impact is not too intense.\n\    TR -= 0.8 * (minusDot + 0.25) * W3;\n\\n\    // The texture function's shading does not correlate with the shape of the cloud\n\    // produced by the layers of noise, so an extra shading scalar is calculated.\n\    // The darkest areas of the cloud are assigned to be where the noise erodes\n\    // the cloud the most. This is then interpolated based on the translucency\n\    // and the diffuse shading term of that point in the cloud.\n\    float shading = mix(1.0 - 0.8 * W * W, 1.0, Id * TR);\n\\n\    // To avoid values that are too dark, this scalar is increased by a small amount\n\    // and clamped so it never goes to zero.\n\    shading = clamp(shading + 0.2, 0.3, 1.0);\n\\n\    // Finally, the contrast of the cloud's color is increased.\n\    vec3 finalColor = mix(vec3(0.5), shading * color, 1.15);\n\    return vec4(finalColor, clamp(TR, 0.0, 1.0)) * v_color;\n\}\n\\n\void main() {\n\#ifdef DEBUG_BILLBOARDS\n\    gl_FragColor = vec4(0.0, 0.5, 0.5, 1.0);\n\#endif\n\    // To avoid calculations with high values,\n\    // we raycast from an arbitrarily smaller space.\n\    vec2 coordinate = v_maximumSize.xy * v_offset;\n\\n\    vec3 ellipsoidScale = 0.82 * v_maximumSize;\n\    vec3 ellipsoidCenter = vec3(0.0);\n\\n\    float zOffset = max(ellipsoidScale.z - 10.0, 0.0);\n\    vec3 eye = vec3(0, 0, -10.0 - zOffset);\n\    vec3 rayDir = normalize(vec3(coordinate, 1.0) - eye);\n\    vec3 rayOrigin = eye;\n\#ifdef DEBUG_ELLIPSOIDS\n\    vec3 point, normal;\n\    if(intersectEllipsoid(rayOrigin, rayDir, ellipsoidCenter, ellipsoidScale, v_slice,\n\                          point, normal)) {\n\        gl_FragColor = v_brightness * v_color;\n\    }\n\#else\n\#ifndef DEBUG_BILLBOARDS\n\    vec4 cloud = drawCloud(rayOrigin, rayDir,\n\                           ellipsoidCenter, ellipsoidScale, v_slice, v_brightness);\n\    if(cloud.w < 0.01) {\n\        discard;\n\    }\n\    gl_FragColor = cloud;\n\#endif\n\#endif\n\}\n\";
 |