| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 | //This file is automatically rebuilt by the Cesium build process.export default "void clipLineSegmentToNearPlane(\n\    vec3 p0,\n\    vec3 p1,\n\    out vec4 positionWC,\n\    out bool clipped,\n\    out bool culledByNearPlane,\n\    out vec4 clippedPositionEC)\n\{\n\    culledByNearPlane = false;\n\    clipped = false;\n\\n\    vec3 p0ToP1 = p1 - p0;\n\    float magnitude = length(p0ToP1);\n\    vec3 direction = normalize(p0ToP1);\n\\n\    // Distance that p0 is behind the near plane. Negative means p0 is\n\    // in front of the near plane.\n\    float endPoint0Distance =  czm_currentFrustum.x + p0.z;\n\\n\    // Camera looks down -Z.\n\    // When moving a point along +Z: LESS VISIBLE\n\    //   * Points in front of the camera move closer to the camera.\n\    //   * Points behind the camrea move farther away from the camera.\n\    // When moving a point along -Z: MORE VISIBLE\n\    //   * Points in front of the camera move farther away from the camera.\n\    //   * Points behind the camera move closer to the camera.\n\\n\    // Positive denominator: -Z, becoming more visible\n\    // Negative denominator: +Z, becoming less visible\n\    // Nearly zero: parallel to near plane\n\    float denominator = -direction.z;\n\\n\    if (endPoint0Distance > 0.0 && abs(denominator) < czm_epsilon7)\n\    {\n\        // p0 is behind the near plane and the line to p1 is nearly parallel to\n\        // the near plane, so cull the segment completely.\n\        culledByNearPlane = true;\n\    }\n\    else if (endPoint0Distance > 0.0)\n\    {\n\        // p0 is behind the near plane, and the line to p1 is moving distinctly\n\        // toward or away from it.\n\\n\        // t = (-plane distance - dot(plane normal, ray origin)) / dot(plane normal, ray direction)\n\        float t = endPoint0Distance / denominator;\n\        if (t < 0.0 || t > magnitude)\n\        {\n\            // Near plane intersection is not between the two points.\n\            // We already confirmed p0 is behind the naer plane, so now\n\            // we know the entire segment is behind it.\n\            culledByNearPlane = true;\n\        }\n\        else\n\        {\n\            // Segment crosses the near plane, update p0 to lie exactly on it.\n\            p0 = p0 + t * direction;\n\\n\            // Numerical noise might put us a bit on the wrong side of the near plane.\n\            // Don't let that happen.\n\            p0.z = min(p0.z, -czm_currentFrustum.x);\n\\n\            clipped = true;\n\        }\n\    }\n\\n\    clippedPositionEC = vec4(p0, 1.0);\n\    positionWC = czm_eyeToWindowCoordinates(clippedPositionEC);\n\}\n\\n\vec4 getPolylineWindowCoordinatesEC(vec4 positionEC, vec4 prevEC, vec4 nextEC, float expandDirection, float width, bool usePrevious, out float angle)\n\{\n\    // expandDirection +1 is to the _left_ when looking from positionEC toward nextEC.\n\\n\#ifdef POLYLINE_DASH\n\    // Compute the window coordinates of the points.\n\    vec4 positionWindow = czm_eyeToWindowCoordinates(positionEC);\n\    vec4 previousWindow = czm_eyeToWindowCoordinates(prevEC);\n\    vec4 nextWindow = czm_eyeToWindowCoordinates(nextEC);\n\\n\    // Determine the relative screen space direction of the line.\n\    vec2 lineDir;\n\    if (usePrevious) {\n\        lineDir = normalize(positionWindow.xy - previousWindow.xy);\n\    }\n\    else {\n\        lineDir = normalize(nextWindow.xy - positionWindow.xy);\n\    }\n\    angle = atan(lineDir.x, lineDir.y) - 1.570796327; // precomputed atan(1,0)\n\\n\    // Quantize the angle so it doesn't change rapidly between segments.\n\    angle = floor(angle / czm_piOverFour + 0.5) * czm_piOverFour;\n\#endif\n\\n\    vec4 clippedPrevWC, clippedPrevEC;\n\    bool prevSegmentClipped, prevSegmentCulled;\n\    clipLineSegmentToNearPlane(prevEC.xyz, positionEC.xyz, clippedPrevWC, prevSegmentClipped, prevSegmentCulled, clippedPrevEC);\n\\n\    vec4 clippedNextWC, clippedNextEC;\n\    bool nextSegmentClipped, nextSegmentCulled;\n\    clipLineSegmentToNearPlane(nextEC.xyz, positionEC.xyz, clippedNextWC, nextSegmentClipped, nextSegmentCulled, clippedNextEC);\n\\n\    bool segmentClipped, segmentCulled;\n\    vec4 clippedPositionWC, clippedPositionEC;\n\    clipLineSegmentToNearPlane(positionEC.xyz, usePrevious ? prevEC.xyz : nextEC.xyz, clippedPositionWC, segmentClipped, segmentCulled, clippedPositionEC);\n\\n\    if (segmentCulled)\n\    {\n\        return vec4(0.0, 0.0, 0.0, 1.0);\n\    }\n\\n\    vec2 directionToPrevWC = normalize(clippedPrevWC.xy - clippedPositionWC.xy);\n\    vec2 directionToNextWC = normalize(clippedNextWC.xy - clippedPositionWC.xy);\n\\n\    // If a segment was culled, we can't use the corresponding direction\n\    // computed above. We should never see both of these be true without\n\    // `segmentCulled` above also being true.\n\    if (prevSegmentCulled)\n\    {\n\        directionToPrevWC = -directionToNextWC;\n\    }\n\    else if (nextSegmentCulled)\n\    {\n\        directionToNextWC = -directionToPrevWC;\n\    }\n\\n\    vec2 thisSegmentForwardWC, otherSegmentForwardWC;\n\    if (usePrevious)\n\    {\n\        thisSegmentForwardWC = -directionToPrevWC;\n\        otherSegmentForwardWC = directionToNextWC;\n\    }\n\    else\n\    {\n\        thisSegmentForwardWC = directionToNextWC;\n\        otherSegmentForwardWC =  -directionToPrevWC;\n\    }\n\\n\    vec2 thisSegmentLeftWC = vec2(-thisSegmentForwardWC.y, thisSegmentForwardWC.x);\n\\n\    vec2 leftWC = thisSegmentLeftWC;\n\    float expandWidth = width * 0.5;\n\\n\    // When lines are split at the anti-meridian, the position may be at the\n\    // same location as the next or previous position, and we need to handle\n\    // that to avoid producing NaNs.\n\    if (!czm_equalsEpsilon(prevEC.xyz - positionEC.xyz, vec3(0.0), czm_epsilon1) && !czm_equalsEpsilon(nextEC.xyz - positionEC.xyz, vec3(0.0), czm_epsilon1))\n\    {\n\        vec2 otherSegmentLeftWC = vec2(-otherSegmentForwardWC.y, otherSegmentForwardWC.x);\n\\n\        vec2 leftSumWC = thisSegmentLeftWC + otherSegmentLeftWC;\n\        float leftSumLength = length(leftSumWC);\n\        leftWC = leftSumLength < czm_epsilon6 ? thisSegmentLeftWC : (leftSumWC / leftSumLength);\n\\n\        // The sine of the angle between the two vectors is given by the formula\n\        //         |a x b| = |a||b|sin(theta)\n\        // which is\n\        //     float sinAngle = length(cross(vec3(leftWC, 0.0), vec3(-thisSegmentForwardWC, 0.0)));\n\        // Because the z components of both vectors are zero, the x and y coordinate will be zero.\n\        // Therefore, the sine of the angle is just the z component of the cross product.\n\        vec2 u = -thisSegmentForwardWC;\n\        vec2 v = leftWC;\n\        float sinAngle = abs(u.x * v.y - u.y * v.x);\n\        expandWidth = clamp(expandWidth / sinAngle, 0.0, width * 2.0);\n\    }\n\\n\    vec2 offset = leftWC * expandDirection * expandWidth * czm_pixelRatio;\n\    return vec4(clippedPositionWC.xy + offset, -clippedPositionWC.z, 1.0) * (czm_projection * clippedPositionEC).w;\n\}\n\\n\vec4 getPolylineWindowCoordinates(vec4 position, vec4 previous, vec4 next, float expandDirection, float width, bool usePrevious, out float angle)\n\{\n\    vec4 positionEC = czm_modelViewRelativeToEye * position;\n\    vec4 prevEC = czm_modelViewRelativeToEye * previous;\n\    vec4 nextEC = czm_modelViewRelativeToEye * next;\n\    return getPolylineWindowCoordinatesEC(positionEC, prevEC, nextEC, expandDirection, width, usePrevious, angle);\n\}\n\";
 |