| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | attribute vec3 position3DHigh;attribute vec3 position3DLow;attribute vec4 startHiAndForwardOffsetX;attribute vec4 startLoAndForwardOffsetY;attribute vec4 startNormalAndForwardOffsetZ;attribute vec4 endNormalAndTextureCoordinateNormalizationX;attribute vec4 rightNormalAndTextureCoordinateNormalizationY;attribute vec4 startHiLo2D;attribute vec4 offsetAndRight2D;attribute vec4 startEndNormals2D;attribute vec2 texcoordNormalization2D;attribute float batchId;varying vec3 v_forwardDirectionEC;varying vec3 v_texcoordNormalizationAndHalfWidth;varying float v_batchId;// For materials#ifdef WIDTH_VARYINGvarying float v_width;#endif#ifdef ANGLE_VARYINGvarying float v_polylineAngle;#endif#ifdef PER_INSTANCE_COLORvarying vec4 v_color;#elsevarying vec2 v_alignedPlaneDistances;varying float v_texcoordT;#endif// Morphing planes using SLERP or NLERP doesn't seem to work, so instead draw the material directly on the shadow volume.// Morph views are from very far away and aren't meant to be used precisely, so this should be sufficient.void main(){    v_batchId = batchId;    // Start position    vec4 posRelativeToEye2D = czm_translateRelativeToEye(vec3(0.0, startHiLo2D.xy), vec3(0.0, startHiLo2D.zw));    vec4 posRelativeToEye3D = czm_translateRelativeToEye(startHiAndForwardOffsetX.xyz, startLoAndForwardOffsetY.xyz);    vec4 posRelativeToEye = czm_columbusViewMorph(posRelativeToEye2D, posRelativeToEye3D, czm_morphTime);    vec3 posEc2D = (czm_modelViewRelativeToEye * posRelativeToEye2D).xyz;    vec3 posEc3D = (czm_modelViewRelativeToEye * posRelativeToEye3D).xyz;    vec3 startEC = (czm_modelViewRelativeToEye * posRelativeToEye).xyz;    // Start plane    vec4 startPlane2D;    vec4 startPlane3D;    startPlane2D.xyz = czm_normal * vec3(0.0, startEndNormals2D.xy);    startPlane3D.xyz = czm_normal * startNormalAndForwardOffsetZ.xyz;    startPlane2D.w = -dot(startPlane2D.xyz, posEc2D);    startPlane3D.w = -dot(startPlane3D.xyz, posEc3D);    // Right plane    vec4 rightPlane2D;    vec4 rightPlane3D;    rightPlane2D.xyz = czm_normal * vec3(0.0, offsetAndRight2D.zw);    rightPlane3D.xyz = czm_normal * rightNormalAndTextureCoordinateNormalizationY.xyz;    rightPlane2D.w = -dot(rightPlane2D.xyz, posEc2D);    rightPlane3D.w = -dot(rightPlane3D.xyz, posEc3D);    // End position    posRelativeToEye2D = posRelativeToEye2D + vec4(0.0, offsetAndRight2D.xy, 0.0);    posRelativeToEye3D = posRelativeToEye3D + vec4(startHiAndForwardOffsetX.w, startLoAndForwardOffsetY.w, startNormalAndForwardOffsetZ.w, 0.0);    posRelativeToEye = czm_columbusViewMorph(posRelativeToEye2D, posRelativeToEye3D, czm_morphTime);    posEc2D = (czm_modelViewRelativeToEye * posRelativeToEye2D).xyz;    posEc3D = (czm_modelViewRelativeToEye * posRelativeToEye3D).xyz;    vec3 endEC = (czm_modelViewRelativeToEye * posRelativeToEye).xyz;    vec3 forwardEc3D = czm_normal * normalize(vec3(startHiAndForwardOffsetX.w, startLoAndForwardOffsetY.w, startNormalAndForwardOffsetZ.w));    vec3 forwardEc2D = czm_normal * normalize(vec3(0.0, offsetAndRight2D.xy));    // End plane    vec4 endPlane2D;    vec4 endPlane3D;    endPlane2D.xyz = czm_normal * vec3(0.0, startEndNormals2D.zw);    endPlane3D.xyz = czm_normal * endNormalAndTextureCoordinateNormalizationX.xyz;    endPlane2D.w = -dot(endPlane2D.xyz, posEc2D);    endPlane3D.w = -dot(endPlane3D.xyz, posEc3D);    // Forward direction    v_forwardDirectionEC = normalize(endEC - startEC);    vec2 cleanTexcoordNormalization2D;    cleanTexcoordNormalization2D.x = abs(texcoordNormalization2D.x);    cleanTexcoordNormalization2D.y = czm_branchFreeTernary(texcoordNormalization2D.y > 1.0, 0.0, abs(texcoordNormalization2D.y));    vec2 cleanTexcoordNormalization3D;    cleanTexcoordNormalization3D.x = abs(endNormalAndTextureCoordinateNormalizationX.w);    cleanTexcoordNormalization3D.y = rightNormalAndTextureCoordinateNormalizationY.w;    cleanTexcoordNormalization3D.y = czm_branchFreeTernary(cleanTexcoordNormalization3D.y > 1.0, 0.0, abs(cleanTexcoordNormalization3D.y));    v_texcoordNormalizationAndHalfWidth.xy = mix(cleanTexcoordNormalization2D, cleanTexcoordNormalization3D, czm_morphTime);#ifdef PER_INSTANCE_COLOR    v_color = czm_batchTable_color(batchId);#else // PER_INSTANCE_COLOR    // For computing texture coordinates    v_alignedPlaneDistances.x = -dot(v_forwardDirectionEC, startEC);    v_alignedPlaneDistances.y = -dot(-v_forwardDirectionEC, endEC);#endif // PER_INSTANCE_COLOR#ifdef WIDTH_VARYING    float width = czm_batchTable_width(batchId);    float halfWidth = width * 0.5;    v_width = width;    v_texcoordNormalizationAndHalfWidth.z = halfWidth;#else    float halfWidth = 0.5 * czm_batchTable_width(batchId);    v_texcoordNormalizationAndHalfWidth.z = halfWidth;#endif    // Compute a normal along which to "push" the position out, extending the miter depending on view distance.    // Position has already been "pushed" by unit length along miter normal, and miter normals are encoded in the planes.    // Decode the normal to use at this specific vertex, push the position back, and then push to where it needs to be.    // Since this is morphing, compute both 3D and 2D positions and then blend.    // ****** 3D ******    // Check distance to the end plane and start plane, pick the plane that is closer    vec4 positionEc3D = czm_modelViewRelativeToEye * czm_translateRelativeToEye(position3DHigh, position3DLow); // w = 1.0, see czm_computePosition    float absStartPlaneDistance = abs(czm_planeDistance(startPlane3D, positionEc3D.xyz));    float absEndPlaneDistance = abs(czm_planeDistance(endPlane3D, positionEc3D.xyz));    vec3 planeDirection = czm_branchFreeTernary(absStartPlaneDistance < absEndPlaneDistance, startPlane3D.xyz, endPlane3D.xyz);    vec3 upOrDown = normalize(cross(rightPlane3D.xyz, planeDirection)); // Points "up" for start plane, "down" at end plane.    vec3 normalEC = normalize(cross(planeDirection, upOrDown));         // In practice, the opposite seems to work too.    // Nudge the top vertex upwards to prevent flickering    vec3 geodeticSurfaceNormal = normalize(cross(normalEC, forwardEc3D));    geodeticSurfaceNormal *= float(0.0 <= rightNormalAndTextureCoordinateNormalizationY.w && rightNormalAndTextureCoordinateNormalizationY.w <= 1.0);    geodeticSurfaceNormal *= MAX_TERRAIN_HEIGHT;    positionEc3D.xyz += geodeticSurfaceNormal;    // Determine if this vertex is on the "left" or "right"    normalEC *= sign(endNormalAndTextureCoordinateNormalizationX.w);    // A "perfect" implementation would push along normals according to the angle against forward.    // In practice, just pushing the normal out by halfWidth is sufficient for morph views.    positionEc3D.xyz += halfWidth * max(0.0, czm_metersPerPixel(positionEc3D)) * normalEC; // prevent artifacts when czm_metersPerPixel is negative (behind camera)    // ****** 2D ******    // Check distance to the end plane and start plane, pick the plane that is closer    vec4 positionEc2D = czm_modelViewRelativeToEye * czm_translateRelativeToEye(position2DHigh.zxy, position2DLow.zxy); // w = 1.0, see czm_computePosition    absStartPlaneDistance = abs(czm_planeDistance(startPlane2D, positionEc2D.xyz));    absEndPlaneDistance = abs(czm_planeDistance(endPlane2D, positionEc2D.xyz));    planeDirection = czm_branchFreeTernary(absStartPlaneDistance < absEndPlaneDistance, startPlane2D.xyz, endPlane2D.xyz);    upOrDown = normalize(cross(rightPlane2D.xyz, planeDirection)); // Points "up" for start plane, "down" at end plane.    normalEC = normalize(cross(planeDirection, upOrDown));         // In practice, the opposite seems to work too.    // Nudge the top vertex upwards to prevent flickering    geodeticSurfaceNormal = normalize(cross(normalEC, forwardEc2D));    geodeticSurfaceNormal *= float(0.0 <= texcoordNormalization2D.y && texcoordNormalization2D.y <= 1.0);    geodeticSurfaceNormal *= MAX_TERRAIN_HEIGHT;    positionEc2D.xyz += geodeticSurfaceNormal;    // Determine if this vertex is on the "left" or "right"    normalEC *= sign(texcoordNormalization2D.x);#ifndef PER_INSTANCE_COLOR    // Use vertex's sidedness to compute its texture coordinate.    v_texcoordT = clamp(sign(texcoordNormalization2D.x), 0.0, 1.0);#endif    // A "perfect" implementation would push along normals according to the angle against forward.    // In practice, just pushing the normal out by halfWidth is sufficient for morph views.    positionEc2D.xyz += halfWidth * max(0.0, czm_metersPerPixel(positionEc2D)) * normalEC; // prevent artifacts when czm_metersPerPixel is negative (behind camera)    // Blend for actual position    gl_Position = czm_projection * mix(positionEc2D, positionEc3D, czm_morphTime);#ifdef ANGLE_VARYING    // Approximate relative screen space direction of the line.    vec2 approxLineDirection = normalize(vec2(v_forwardDirectionEC.x, -v_forwardDirectionEC.y));    approxLineDirection.y = czm_branchFreeTernary(approxLineDirection.x == 0.0 && approxLineDirection.y == 0.0, -1.0, approxLineDirection.y);    v_polylineAngle = czm_fastApproximateAtan(approxLineDirection.x, approxLineDirection.y);#endif}
 |