| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469 | /* This file is automatically rebuilt by the Cesium build process. */define(['exports', './GeometryOffsetAttribute-3e8c299c', './Transforms-323408fe', './Matrix2-69c32d33', './ComponentDatatype-b1ea011a', './CylinderGeometryLibrary-1ace08dc', './defaultValue-94c3e563', './RuntimeError-c581ca93', './GeometryAttribute-cb73bb3f', './GeometryAttributes-7df9bef6', './IndexDatatype-c4099fe9', './VertexFormat-e46f29d6'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, ComponentDatatype, CylinderGeometryLibrary, defaultValue, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, VertexFormat) { 'use strict';  const radiusScratch = new Matrix2.Cartesian2();  const normalScratch = new Matrix2.Cartesian3();  const bitangentScratch = new Matrix2.Cartesian3();  const tangentScratch = new Matrix2.Cartesian3();  const positionScratch = new Matrix2.Cartesian3();  /**   * A description of a cylinder.   *   * @alias CylinderGeometry   * @constructor   *   * @param {Object} options Object with the following properties:   * @param {Number} options.length The length of the cylinder.   * @param {Number} options.topRadius The radius of the top of the cylinder.   * @param {Number} options.bottomRadius The radius of the bottom of the cylinder.   * @param {Number} [options.slices=128] The number of edges around the perimeter of the cylinder.   * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.   *   * @exception {DeveloperError} options.slices must be greater than or equal to 3.   *   * @see CylinderGeometry.createGeometry   *   * @example   * // create cylinder geometry   * const cylinder = new Cesium.CylinderGeometry({   *     length: 200000,   *     topRadius: 80000,   *     bottomRadius: 200000,   * });   * const geometry = Cesium.CylinderGeometry.createGeometry(cylinder);   */  function CylinderGeometry(options) {    options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);    const length = options.length;    const topRadius = options.topRadius;    const bottomRadius = options.bottomRadius;    const vertexFormat = defaultValue.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);    const slices = defaultValue.defaultValue(options.slices, 128);    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(length)) {      throw new RuntimeError.DeveloperError("options.length must be defined.");    }    if (!defaultValue.defined(topRadius)) {      throw new RuntimeError.DeveloperError("options.topRadius must be defined.");    }    if (!defaultValue.defined(bottomRadius)) {      throw new RuntimeError.DeveloperError("options.bottomRadius must be defined.");    }    if (slices < 3) {      throw new RuntimeError.DeveloperError(        "options.slices must be greater than or equal to 3."      );    }    if (      defaultValue.defined(options.offsetAttribute) &&      options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP    ) {      throw new RuntimeError.DeveloperError(        "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."      );    }    //>>includeEnd('debug');    this._length = length;    this._topRadius = topRadius;    this._bottomRadius = bottomRadius;    this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);    this._slices = slices;    this._offsetAttribute = options.offsetAttribute;    this._workerName = "createCylinderGeometry";  }  /**   * The number of elements used to pack the object into an array.   * @type {Number}   */  CylinderGeometry.packedLength = VertexFormat.VertexFormat.packedLength + 5;  /**   * Stores the provided instance into the provided array.   *   * @param {CylinderGeometry} value The value to pack.   * @param {Number[]} array The array to pack into.   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.   *   * @returns {Number[]} The array that was packed into   */  CylinderGeometry.pack = function (value, array, startingIndex) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(value)) {      throw new RuntimeError.DeveloperError("value is required");    }    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);    startingIndex += VertexFormat.VertexFormat.packedLength;    array[startingIndex++] = value._length;    array[startingIndex++] = value._topRadius;    array[startingIndex++] = value._bottomRadius;    array[startingIndex++] = value._slices;    array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1);    return array;  };  const scratchVertexFormat = new VertexFormat.VertexFormat();  const scratchOptions = {    vertexFormat: scratchVertexFormat,    length: undefined,    topRadius: undefined,    bottomRadius: undefined,    slices: undefined,    offsetAttribute: undefined,  };  /**   * Retrieves an instance from a packed array.   *   * @param {Number[]} array The packed array.   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.   * @param {CylinderGeometry} [result] The object into which to store the result.   * @returns {CylinderGeometry} The modified result parameter or a new CylinderGeometry instance if one was not provided.   */  CylinderGeometry.unpack = function (array, startingIndex, result) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    const vertexFormat = VertexFormat.VertexFormat.unpack(      array,      startingIndex,      scratchVertexFormat    );    startingIndex += VertexFormat.VertexFormat.packedLength;    const length = array[startingIndex++];    const topRadius = array[startingIndex++];    const bottomRadius = array[startingIndex++];    const slices = array[startingIndex++];    const offsetAttribute = array[startingIndex];    if (!defaultValue.defined(result)) {      scratchOptions.length = length;      scratchOptions.topRadius = topRadius;      scratchOptions.bottomRadius = bottomRadius;      scratchOptions.slices = slices;      scratchOptions.offsetAttribute =        offsetAttribute === -1 ? undefined : offsetAttribute;      return new CylinderGeometry(scratchOptions);    }    result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);    result._length = length;    result._topRadius = topRadius;    result._bottomRadius = bottomRadius;    result._slices = slices;    result._offsetAttribute =      offsetAttribute === -1 ? undefined : offsetAttribute;    return result;  };  /**   * Computes the geometric representation of a cylinder, including its vertices, indices, and a bounding sphere.   *   * @param {CylinderGeometry} cylinderGeometry A description of the cylinder.   * @returns {Geometry|undefined} The computed vertices and indices.   */  CylinderGeometry.createGeometry = function (cylinderGeometry) {    let length = cylinderGeometry._length;    const topRadius = cylinderGeometry._topRadius;    const bottomRadius = cylinderGeometry._bottomRadius;    const vertexFormat = cylinderGeometry._vertexFormat;    const slices = cylinderGeometry._slices;    if (      length <= 0 ||      topRadius < 0 ||      bottomRadius < 0 ||      (topRadius === 0 && bottomRadius === 0)    ) {      return;    }    const twoSlices = slices + slices;    const threeSlices = slices + twoSlices;    const numVertices = twoSlices + twoSlices;    const positions = CylinderGeometryLibrary.CylinderGeometryLibrary.computePositions(      length,      topRadius,      bottomRadius,      slices,      true    );    const st = vertexFormat.st ? new Float32Array(numVertices * 2) : undefined;    const normals = vertexFormat.normal      ? new Float32Array(numVertices * 3)      : undefined;    const tangents = vertexFormat.tangent      ? new Float32Array(numVertices * 3)      : undefined;    const bitangents = vertexFormat.bitangent      ? new Float32Array(numVertices * 3)      : undefined;    let i;    const computeNormal =      vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent;    if (computeNormal) {      const computeTangent = vertexFormat.tangent || vertexFormat.bitangent;      let normalIndex = 0;      let tangentIndex = 0;      let bitangentIndex = 0;      const theta = Math.atan2(bottomRadius - topRadius, length);      const normal = normalScratch;      normal.z = Math.sin(theta);      const normalScale = Math.cos(theta);      let tangent = tangentScratch;      let bitangent = bitangentScratch;      for (i = 0; i < slices; i++) {        const angle = (i / slices) * ComponentDatatype.CesiumMath.TWO_PI;        const x = normalScale * Math.cos(angle);        const y = normalScale * Math.sin(angle);        if (computeNormal) {          normal.x = x;          normal.y = y;          if (computeTangent) {            tangent = Matrix2.Cartesian3.normalize(              Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent),              tangent            );          }          if (vertexFormat.normal) {            normals[normalIndex++] = normal.x;            normals[normalIndex++] = normal.y;            normals[normalIndex++] = normal.z;            normals[normalIndex++] = normal.x;            normals[normalIndex++] = normal.y;            normals[normalIndex++] = normal.z;          }          if (vertexFormat.tangent) {            tangents[tangentIndex++] = tangent.x;            tangents[tangentIndex++] = tangent.y;            tangents[tangentIndex++] = tangent.z;            tangents[tangentIndex++] = tangent.x;            tangents[tangentIndex++] = tangent.y;            tangents[tangentIndex++] = tangent.z;          }          if (vertexFormat.bitangent) {            bitangent = Matrix2.Cartesian3.normalize(              Matrix2.Cartesian3.cross(normal, tangent, bitangent),              bitangent            );            bitangents[bitangentIndex++] = bitangent.x;            bitangents[bitangentIndex++] = bitangent.y;            bitangents[bitangentIndex++] = bitangent.z;            bitangents[bitangentIndex++] = bitangent.x;            bitangents[bitangentIndex++] = bitangent.y;            bitangents[bitangentIndex++] = bitangent.z;          }        }      }      for (i = 0; i < slices; i++) {        if (vertexFormat.normal) {          normals[normalIndex++] = 0;          normals[normalIndex++] = 0;          normals[normalIndex++] = -1;        }        if (vertexFormat.tangent) {          tangents[tangentIndex++] = 1;          tangents[tangentIndex++] = 0;          tangents[tangentIndex++] = 0;        }        if (vertexFormat.bitangent) {          bitangents[bitangentIndex++] = 0;          bitangents[bitangentIndex++] = -1;          bitangents[bitangentIndex++] = 0;        }      }      for (i = 0; i < slices; i++) {        if (vertexFormat.normal) {          normals[normalIndex++] = 0;          normals[normalIndex++] = 0;          normals[normalIndex++] = 1;        }        if (vertexFormat.tangent) {          tangents[tangentIndex++] = 1;          tangents[tangentIndex++] = 0;          tangents[tangentIndex++] = 0;        }        if (vertexFormat.bitangent) {          bitangents[bitangentIndex++] = 0;          bitangents[bitangentIndex++] = 1;          bitangents[bitangentIndex++] = 0;        }      }    }    const numIndices = 12 * slices - 12;    const indices = IndexDatatype.IndexDatatype.createTypedArray(numVertices, numIndices);    let index = 0;    let j = 0;    for (i = 0; i < slices - 1; i++) {      indices[index++] = j;      indices[index++] = j + 2;      indices[index++] = j + 3;      indices[index++] = j;      indices[index++] = j + 3;      indices[index++] = j + 1;      j += 2;    }    indices[index++] = twoSlices - 2;    indices[index++] = 0;    indices[index++] = 1;    indices[index++] = twoSlices - 2;    indices[index++] = 1;    indices[index++] = twoSlices - 1;    for (i = 1; i < slices - 1; i++) {      indices[index++] = twoSlices + i + 1;      indices[index++] = twoSlices + i;      indices[index++] = twoSlices;    }    for (i = 1; i < slices - 1; i++) {      indices[index++] = threeSlices;      indices[index++] = threeSlices + i;      indices[index++] = threeSlices + i + 1;    }    let textureCoordIndex = 0;    if (vertexFormat.st) {      const rad = Math.max(topRadius, bottomRadius);      for (i = 0; i < numVertices; i++) {        const position = Matrix2.Cartesian3.fromArray(positions, i * 3, positionScratch);        st[textureCoordIndex++] = (position.x + rad) / (2.0 * rad);        st[textureCoordIndex++] = (position.y + rad) / (2.0 * rad);      }    }    const attributes = new GeometryAttributes.GeometryAttributes();    if (vertexFormat.position) {      attributes.position = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,        componentsPerAttribute: 3,        values: positions,      });    }    if (vertexFormat.normal) {      attributes.normal = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: normals,      });    }    if (vertexFormat.tangent) {      attributes.tangent = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: tangents,      });    }    if (vertexFormat.bitangent) {      attributes.bitangent = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,        componentsPerAttribute: 3,        values: bitangents,      });    }    if (vertexFormat.st) {      attributes.st = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,        componentsPerAttribute: 2,        values: st,      });    }    radiusScratch.x = length * 0.5;    radiusScratch.y = Math.max(bottomRadius, topRadius);    const boundingSphere = new Transforms.BoundingSphere(      Matrix2.Cartesian3.ZERO,      Matrix2.Cartesian2.magnitude(radiusScratch)    );    if (defaultValue.defined(cylinderGeometry._offsetAttribute)) {      length = positions.length;      const applyOffset = new Uint8Array(length / 3);      const offsetValue =        cylinderGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE          ? 0          : 1;      GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);      attributes.applyOffset = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,        componentsPerAttribute: 1,        values: applyOffset,      });    }    return new GeometryAttribute.Geometry({      attributes: attributes,      indices: indices,      primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,      boundingSphere: boundingSphere,      offsetAttribute: cylinderGeometry._offsetAttribute,    });  };  let unitCylinderGeometry;  /**   * Returns the geometric representation of a unit cylinder, including its vertices, indices, and a bounding sphere.   * @returns {Geometry} The computed vertices and indices.   *   * @private   */  CylinderGeometry.getUnitCylinder = function () {    if (!defaultValue.defined(unitCylinderGeometry)) {      unitCylinderGeometry = CylinderGeometry.createGeometry(        new CylinderGeometry({          topRadius: 1.0,          bottomRadius: 1.0,          length: 1.0,          vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,        })      );    }    return unitCylinderGeometry;  };  exports.CylinderGeometry = CylinderGeometry;}));
 |