| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 | /* This file is automatically rebuilt by the Cesium build process. */define(['exports', './Matrix2-69c32d33', './ComponentDatatype-b1ea011a', './Transforms-323408fe'], (function (exports, Matrix2, ComponentDatatype, Transforms) { 'use strict';  const EllipseGeometryLibrary = {};  const rotAxis = new Matrix2.Cartesian3();  const tempVec = new Matrix2.Cartesian3();  const unitQuat = new Transforms.Quaternion();  const rotMtx = new Matrix2.Matrix3();  function pointOnEllipsoid(    theta,    rotation,    northVec,    eastVec,    aSqr,    ab,    bSqr,    mag,    unitPos,    result  ) {    const azimuth = theta + rotation;    Matrix2.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);    Matrix2.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);    Matrix2.Cartesian3.add(rotAxis, tempVec, rotAxis);    let cosThetaSquared = Math.cos(theta);    cosThetaSquared = cosThetaSquared * cosThetaSquared;    let sinThetaSquared = Math.sin(theta);    sinThetaSquared = sinThetaSquared * sinThetaSquared;    const radius =      ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);    const angle = radius / mag;    // Create the quaternion to rotate the position vector to the boundary of the ellipse.    Transforms.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);    Matrix2.Matrix3.fromQuaternion(unitQuat, rotMtx);    Matrix2.Matrix3.multiplyByVector(rotMtx, unitPos, result);    Matrix2.Cartesian3.normalize(result, result);    Matrix2.Cartesian3.multiplyByScalar(result, mag, result);    return result;  }  const scratchCartesian1 = new Matrix2.Cartesian3();  const scratchCartesian2 = new Matrix2.Cartesian3();  const scratchCartesian3 = new Matrix2.Cartesian3();  const scratchNormal = new Matrix2.Cartesian3();  /**   * Returns the positions raised to the given heights   * @private   */  EllipseGeometryLibrary.raisePositionsToHeight = function (    positions,    options,    extrude  ) {    const ellipsoid = options.ellipsoid;    const height = options.height;    const extrudedHeight = options.extrudedHeight;    const size = extrude ? (positions.length / 3) * 2 : positions.length / 3;    const finalPositions = new Float64Array(size * 3);    const length = positions.length;    const bottomOffset = extrude ? length : 0;    for (let i = 0; i < length; i += 3) {      const i1 = i + 1;      const i2 = i + 2;      const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);      ellipsoid.scaleToGeodeticSurface(position, position);      const extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2);      const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);      const scaledNormal = Matrix2.Cartesian3.multiplyByScalar(        normal,        height,        scratchCartesian3      );      Matrix2.Cartesian3.add(position, scaledNormal, position);      if (extrude) {        Matrix2.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);        Matrix2.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);        finalPositions[i + bottomOffset] = extrudedPosition.x;        finalPositions[i1 + bottomOffset] = extrudedPosition.y;        finalPositions[i2 + bottomOffset] = extrudedPosition.z;      }      finalPositions[i] = position.x;      finalPositions[i1] = position.y;      finalPositions[i2] = position.z;    }    return finalPositions;  };  const unitPosScratch = new Matrix2.Cartesian3();  const eastVecScratch = new Matrix2.Cartesian3();  const northVecScratch = new Matrix2.Cartesian3();  /**   * Returns an array of positions that make up the ellipse.   * @private   */  EllipseGeometryLibrary.computeEllipsePositions = function (    options,    addFillPositions,    addEdgePositions  ) {    const semiMinorAxis = options.semiMinorAxis;    const semiMajorAxis = options.semiMajorAxis;    const rotation = options.rotation;    const center = options.center;    // Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the    // arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or    // semi-minor axis is much bigger than the other. Instead, scale the angle delta to make    // the distance along the ellipse boundary more closely match the granularity.    const granularity = options.granularity * 8.0;    const aSqr = semiMinorAxis * semiMinorAxis;    const bSqr = semiMajorAxis * semiMajorAxis;    const ab = semiMajorAxis * semiMinorAxis;    const mag = Matrix2.Cartesian3.magnitude(center);    const unitPos = Matrix2.Cartesian3.normalize(center, unitPosScratch);    let eastVec = Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, center, eastVecScratch);    eastVec = Matrix2.Cartesian3.normalize(eastVec, eastVec);    const northVec = Matrix2.Cartesian3.cross(unitPos, eastVec, northVecScratch);    // The number of points in the first quadrant    let numPts = 1 + Math.ceil(ComponentDatatype.CesiumMath.PI_OVER_TWO / granularity);    const deltaTheta = ComponentDatatype.CesiumMath.PI_OVER_TWO / (numPts - 1);    let theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - numPts * deltaTheta;    if (theta < 0.0) {      numPts -= Math.ceil(Math.abs(theta) / deltaTheta);    }    // If the number of points were three, the ellipse    // would be tessellated like below:    //    //         *---*    //       / | \ | \    //     *---*---*---*    //   / | \ | \ | \ | \    //  / .*---*---*---*. \    // * ` | \ | \ | \ | `*    //  \`.*---*---*---*.`/    //   \ | \ | \ | \ | /    //     *---*---*---*    //       \ | \ | /    //         *---*    // The first and last column have one position and fan to connect to the adjacent column.    // Each other vertical column contains an even number of positions.    const size = 2 * (numPts * (numPts + 2));    const positions = addFillPositions ? new Array(size * 3) : undefined;    let positionIndex = 0;    let position = scratchCartesian1;    let reflectedPosition = scratchCartesian2;    const outerPositionsLength = numPts * 4 * 3;    let outerRightIndex = outerPositionsLength - 1;    let outerLeftIndex = 0;    const outerPositions = addEdgePositions      ? new Array(outerPositionsLength)      : undefined;    let i;    let j;    let numInterior;    let t;    let interiorPosition;    // Compute points in the 'eastern' half of the ellipse    theta = ComponentDatatype.CesiumMath.PI_OVER_TWO;    position = pointOnEllipsoid(      theta,      rotation,      northVec,      eastVec,      aSqr,      ab,      bSqr,      mag,      unitPos,      position    );    if (addFillPositions) {      positions[positionIndex++] = position.x;      positions[positionIndex++] = position.y;      positions[positionIndex++] = position.z;    }    if (addEdgePositions) {      outerPositions[outerRightIndex--] = position.z;      outerPositions[outerRightIndex--] = position.y;      outerPositions[outerRightIndex--] = position.x;    }    theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - deltaTheta;    for (i = 1; i < numPts + 1; ++i) {      position = pointOnEllipsoid(        theta,        rotation,        northVec,        eastVec,        aSqr,        ab,        bSqr,        mag,        unitPos,        position      );      reflectedPosition = pointOnEllipsoid(        Math.PI - theta,        rotation,        northVec,        eastVec,        aSqr,        ab,        bSqr,        mag,        unitPos,        reflectedPosition      );      if (addFillPositions) {        positions[positionIndex++] = position.x;        positions[positionIndex++] = position.y;        positions[positionIndex++] = position.z;        numInterior = 2 * i + 2;        for (j = 1; j < numInterior - 1; ++j) {          t = j / (numInterior - 1);          interiorPosition = Matrix2.Cartesian3.lerp(            position,            reflectedPosition,            t,            scratchCartesian3          );          positions[positionIndex++] = interiorPosition.x;          positions[positionIndex++] = interiorPosition.y;          positions[positionIndex++] = interiorPosition.z;        }        positions[positionIndex++] = reflectedPosition.x;        positions[positionIndex++] = reflectedPosition.y;        positions[positionIndex++] = reflectedPosition.z;      }      if (addEdgePositions) {        outerPositions[outerRightIndex--] = position.z;        outerPositions[outerRightIndex--] = position.y;        outerPositions[outerRightIndex--] = position.x;        outerPositions[outerLeftIndex++] = reflectedPosition.x;        outerPositions[outerLeftIndex++] = reflectedPosition.y;        outerPositions[outerLeftIndex++] = reflectedPosition.z;      }      theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta;    }    // Compute points in the 'western' half of the ellipse    for (i = numPts; i > 1; --i) {      theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta;      position = pointOnEllipsoid(        -theta,        rotation,        northVec,        eastVec,        aSqr,        ab,        bSqr,        mag,        unitPos,        position      );      reflectedPosition = pointOnEllipsoid(        theta + Math.PI,        rotation,        northVec,        eastVec,        aSqr,        ab,        bSqr,        mag,        unitPos,        reflectedPosition      );      if (addFillPositions) {        positions[positionIndex++] = position.x;        positions[positionIndex++] = position.y;        positions[positionIndex++] = position.z;        numInterior = 2 * (i - 1) + 2;        for (j = 1; j < numInterior - 1; ++j) {          t = j / (numInterior - 1);          interiorPosition = Matrix2.Cartesian3.lerp(            position,            reflectedPosition,            t,            scratchCartesian3          );          positions[positionIndex++] = interiorPosition.x;          positions[positionIndex++] = interiorPosition.y;          positions[positionIndex++] = interiorPosition.z;        }        positions[positionIndex++] = reflectedPosition.x;        positions[positionIndex++] = reflectedPosition.y;        positions[positionIndex++] = reflectedPosition.z;      }      if (addEdgePositions) {        outerPositions[outerRightIndex--] = position.z;        outerPositions[outerRightIndex--] = position.y;        outerPositions[outerRightIndex--] = position.x;        outerPositions[outerLeftIndex++] = reflectedPosition.x;        outerPositions[outerLeftIndex++] = reflectedPosition.y;        outerPositions[outerLeftIndex++] = reflectedPosition.z;      }    }    theta = ComponentDatatype.CesiumMath.PI_OVER_TWO;    position = pointOnEllipsoid(      -theta,      rotation,      northVec,      eastVec,      aSqr,      ab,      bSqr,      mag,      unitPos,      position    );    const r = {};    if (addFillPositions) {      positions[positionIndex++] = position.x;      positions[positionIndex++] = position.y;      positions[positionIndex++] = position.z;      r.positions = positions;      r.numPts = numPts;    }    if (addEdgePositions) {      outerPositions[outerRightIndex--] = position.z;      outerPositions[outerRightIndex--] = position.y;      outerPositions[outerRightIndex--] = position.x;      r.outerPositions = outerPositions;    }    return r;  };  exports.EllipseGeometryLibrary = EllipseGeometryLibrary;}));
 |