| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 | /* This file is automatically rebuilt by the Cesium build process. */define(['exports', './GeometryOffsetAttribute-3e8c299c', './Transforms-323408fe', './Matrix2-69c32d33', './ComponentDatatype-b1ea011a', './defaultValue-94c3e563', './RuntimeError-c581ca93', './GeometryAttribute-cb73bb3f', './GeometryAttributes-7df9bef6', './IndexDatatype-c4099fe9'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, ComponentDatatype, defaultValue, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype) { 'use strict';  const defaultRadii = new Matrix2.Cartesian3(1.0, 1.0, 1.0);  const cos = Math.cos;  const sin = Math.sin;  /**   * A description of the outline of an ellipsoid centered at the origin.   *   * @alias EllipsoidOutlineGeometry   * @constructor   *   * @param {Object} [options] Object with the following properties:   * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.   * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.   * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.   * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.   * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.   * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.   * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).   * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).   * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.   *   * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.   * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.   * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.   *   * @example   * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({   *   radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),   *   stackPartitions: 6,   *   slicePartitions: 5   * });   * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);   */  function EllipsoidOutlineGeometry(options) {    options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);    const radii = defaultValue.defaultValue(options.radii, defaultRadii);    const innerRadii = defaultValue.defaultValue(options.innerRadii, radii);    const minimumClock = defaultValue.defaultValue(options.minimumClock, 0.0);    const maximumClock = defaultValue.defaultValue(options.maximumClock, ComponentDatatype.CesiumMath.TWO_PI);    const minimumCone = defaultValue.defaultValue(options.minimumCone, 0.0);    const maximumCone = defaultValue.defaultValue(options.maximumCone, ComponentDatatype.CesiumMath.PI);    const stackPartitions = Math.round(defaultValue.defaultValue(options.stackPartitions, 10));    const slicePartitions = Math.round(defaultValue.defaultValue(options.slicePartitions, 8));    const subdivisions = Math.round(defaultValue.defaultValue(options.subdivisions, 128));    //>>includeStart('debug', pragmas.debug);    if (stackPartitions < 1) {      throw new RuntimeError.DeveloperError("options.stackPartitions cannot be less than 1");    }    if (slicePartitions < 0) {      throw new RuntimeError.DeveloperError("options.slicePartitions cannot be less than 0");    }    if (subdivisions < 0) {      throw new RuntimeError.DeveloperError(        "options.subdivisions must be greater than or equal to zero."      );    }    if (      defaultValue.defined(options.offsetAttribute) &&      options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP    ) {      throw new RuntimeError.DeveloperError(        "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."      );    }    //>>includeEnd('debug');    this._radii = Matrix2.Cartesian3.clone(radii);    this._innerRadii = Matrix2.Cartesian3.clone(innerRadii);    this._minimumClock = minimumClock;    this._maximumClock = maximumClock;    this._minimumCone = minimumCone;    this._maximumCone = maximumCone;    this._stackPartitions = stackPartitions;    this._slicePartitions = slicePartitions;    this._subdivisions = subdivisions;    this._offsetAttribute = options.offsetAttribute;    this._workerName = "createEllipsoidOutlineGeometry";  }  /**   * The number of elements used to pack the object into an array.   * @type {Number}   */  EllipsoidOutlineGeometry.packedLength = 2 * Matrix2.Cartesian3.packedLength + 8;  /**   * Stores the provided instance into the provided array.   *   * @param {EllipsoidOutlineGeometry} value The value to pack.   * @param {Number[]} array The array to pack into.   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.   *   * @returns {Number[]} The array that was packed into   */  EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(value)) {      throw new RuntimeError.DeveloperError("value is required");    }    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    Matrix2.Cartesian3.pack(value._radii, array, startingIndex);    startingIndex += Matrix2.Cartesian3.packedLength;    Matrix2.Cartesian3.pack(value._innerRadii, array, startingIndex);    startingIndex += Matrix2.Cartesian3.packedLength;    array[startingIndex++] = value._minimumClock;    array[startingIndex++] = value._maximumClock;    array[startingIndex++] = value._minimumCone;    array[startingIndex++] = value._maximumCone;    array[startingIndex++] = value._stackPartitions;    array[startingIndex++] = value._slicePartitions;    array[startingIndex++] = value._subdivisions;    array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1);    return array;  };  const scratchRadii = new Matrix2.Cartesian3();  const scratchInnerRadii = new Matrix2.Cartesian3();  const scratchOptions = {    radii: scratchRadii,    innerRadii: scratchInnerRadii,    minimumClock: undefined,    maximumClock: undefined,    minimumCone: undefined,    maximumCone: undefined,    stackPartitions: undefined,    slicePartitions: undefined,    subdivisions: undefined,    offsetAttribute: undefined,  };  /**   * Retrieves an instance from a packed array.   *   * @param {Number[]} array The packed array.   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.   * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.   * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.   */  EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    const radii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchRadii);    startingIndex += Matrix2.Cartesian3.packedLength;    const innerRadii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);    startingIndex += Matrix2.Cartesian3.packedLength;    const minimumClock = array[startingIndex++];    const maximumClock = array[startingIndex++];    const minimumCone = array[startingIndex++];    const maximumCone = array[startingIndex++];    const stackPartitions = array[startingIndex++];    const slicePartitions = array[startingIndex++];    const subdivisions = array[startingIndex++];    const offsetAttribute = array[startingIndex];    if (!defaultValue.defined(result)) {      scratchOptions.minimumClock = minimumClock;      scratchOptions.maximumClock = maximumClock;      scratchOptions.minimumCone = minimumCone;      scratchOptions.maximumCone = maximumCone;      scratchOptions.stackPartitions = stackPartitions;      scratchOptions.slicePartitions = slicePartitions;      scratchOptions.subdivisions = subdivisions;      scratchOptions.offsetAttribute =        offsetAttribute === -1 ? undefined : offsetAttribute;      return new EllipsoidOutlineGeometry(scratchOptions);    }    result._radii = Matrix2.Cartesian3.clone(radii, result._radii);    result._innerRadii = Matrix2.Cartesian3.clone(innerRadii, result._innerRadii);    result._minimumClock = minimumClock;    result._maximumClock = maximumClock;    result._minimumCone = minimumCone;    result._maximumCone = maximumCone;    result._stackPartitions = stackPartitions;    result._slicePartitions = slicePartitions;    result._subdivisions = subdivisions;    result._offsetAttribute =      offsetAttribute === -1 ? undefined : offsetAttribute;    return result;  };  /**   * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.   *   * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.   * @returns {Geometry|undefined} The computed vertices and indices.   */  EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {    const radii = ellipsoidGeometry._radii;    if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {      return;    }    const innerRadii = ellipsoidGeometry._innerRadii;    if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {      return;    }    const minimumClock = ellipsoidGeometry._minimumClock;    const maximumClock = ellipsoidGeometry._maximumClock;    const minimumCone = ellipsoidGeometry._minimumCone;    const maximumCone = ellipsoidGeometry._maximumCone;    const subdivisions = ellipsoidGeometry._subdivisions;    const ellipsoid = Matrix2.Ellipsoid.fromCartesian3(radii);    // Add an extra slice and stack to remain consistent with EllipsoidGeometry    let slicePartitions = ellipsoidGeometry._slicePartitions + 1;    let stackPartitions = ellipsoidGeometry._stackPartitions + 1;    slicePartitions = Math.round(      (slicePartitions * Math.abs(maximumClock - minimumClock)) /        ComponentDatatype.CesiumMath.TWO_PI    );    stackPartitions = Math.round(      (stackPartitions * Math.abs(maximumCone - minimumCone)) / ComponentDatatype.CesiumMath.PI    );    if (slicePartitions < 2) {      slicePartitions = 2;    }    if (stackPartitions < 2) {      stackPartitions = 2;    }    let extraIndices = 0;    let vertexMultiplier = 1.0;    const hasInnerSurface =      innerRadii.x !== radii.x ||      innerRadii.y !== radii.y ||      innerRadii.z !== radii.z;    let isTopOpen = false;    let isBotOpen = false;    if (hasInnerSurface) {      vertexMultiplier = 2.0;      // Add 2x slicePartitions to connect the top/bottom of the outer to      // the top/bottom of the inner      if (minimumCone > 0.0) {        isTopOpen = true;        extraIndices += slicePartitions;      }      if (maximumCone < Math.PI) {        isBotOpen = true;        extraIndices += slicePartitions;      }    }    const vertexCount =      subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);    const positions = new Float64Array(vertexCount * 3);    // Multiply by two because two points define each line segment    const numIndices =      2 *      (vertexCount +        extraIndices -        (slicePartitions + stackPartitions) * vertexMultiplier);    const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices);    let i;    let j;    let theta;    let phi;    let index = 0;    // Calculate sin/cos phi    const sinPhi = new Array(stackPartitions);    const cosPhi = new Array(stackPartitions);    for (i = 0; i < stackPartitions; i++) {      phi =        minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);      sinPhi[i] = sin(phi);      cosPhi[i] = cos(phi);    }    // Calculate sin/cos theta    const sinTheta = new Array(subdivisions);    const cosTheta = new Array(subdivisions);    for (i = 0; i < subdivisions; i++) {      theta =        minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);      sinTheta[i] = sin(theta);      cosTheta[i] = cos(theta);    }    // Calculate the latitude lines on the outer surface    for (i = 0; i < stackPartitions; i++) {      for (j = 0; j < subdivisions; j++) {        positions[index++] = radii.x * sinPhi[i] * cosTheta[j];        positions[index++] = radii.y * sinPhi[i] * sinTheta[j];        positions[index++] = radii.z * cosPhi[i];      }    }    // Calculate the latitude lines on the inner surface    if (hasInnerSurface) {      for (i = 0; i < stackPartitions; i++) {        for (j = 0; j < subdivisions; j++) {          positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];          positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];          positions[index++] = innerRadii.z * cosPhi[i];        }      }    }    // Calculate sin/cos phi    sinPhi.length = subdivisions;    cosPhi.length = subdivisions;    for (i = 0; i < subdivisions; i++) {      phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);      sinPhi[i] = sin(phi);      cosPhi[i] = cos(phi);    }    // Calculate sin/cos theta for each slice partition    sinTheta.length = slicePartitions;    cosTheta.length = slicePartitions;    for (i = 0; i < slicePartitions; i++) {      theta =        minimumClock +        (i * (maximumClock - minimumClock)) / (slicePartitions - 1);      sinTheta[i] = sin(theta);      cosTheta[i] = cos(theta);    }    // Calculate the longitude lines on the outer surface    for (i = 0; i < subdivisions; i++) {      for (j = 0; j < slicePartitions; j++) {        positions[index++] = radii.x * sinPhi[i] * cosTheta[j];        positions[index++] = radii.y * sinPhi[i] * sinTheta[j];        positions[index++] = radii.z * cosPhi[i];      }    }    // Calculate the longitude lines on the inner surface    if (hasInnerSurface) {      for (i = 0; i < subdivisions; i++) {        for (j = 0; j < slicePartitions; j++) {          positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];          positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];          positions[index++] = innerRadii.z * cosPhi[i];        }      }    }    // Create indices for the latitude lines    index = 0;    for (i = 0; i < stackPartitions * vertexMultiplier; i++) {      const topOffset = i * subdivisions;      for (j = 0; j < subdivisions - 1; j++) {        indices[index++] = topOffset + j;        indices[index++] = topOffset + j + 1;      }    }    // Create indices for the outer longitude lines    let offset = stackPartitions * subdivisions * vertexMultiplier;    for (i = 0; i < slicePartitions; i++) {      for (j = 0; j < subdivisions - 1; j++) {        indices[index++] = offset + i + j * slicePartitions;        indices[index++] = offset + i + (j + 1) * slicePartitions;      }    }    // Create indices for the inner longitude lines    if (hasInnerSurface) {      offset =        stackPartitions * subdivisions * vertexMultiplier +        slicePartitions * subdivisions;      for (i = 0; i < slicePartitions; i++) {        for (j = 0; j < subdivisions - 1; j++) {          indices[index++] = offset + i + j * slicePartitions;          indices[index++] = offset + i + (j + 1) * slicePartitions;        }      }    }    if (hasInnerSurface) {      let outerOffset = stackPartitions * subdivisions * vertexMultiplier;      let innerOffset = outerOffset + subdivisions * slicePartitions;      if (isTopOpen) {        // Draw lines from the top of the inner surface to the top of the outer surface        for (i = 0; i < slicePartitions; i++) {          indices[index++] = outerOffset + i;          indices[index++] = innerOffset + i;        }      }      if (isBotOpen) {        // Draw lines from the top of the inner surface to the top of the outer surface        outerOffset += subdivisions * slicePartitions - slicePartitions;        innerOffset += subdivisions * slicePartitions - slicePartitions;        for (i = 0; i < slicePartitions; i++) {          indices[index++] = outerOffset + i;          indices[index++] = innerOffset + i;        }      }    }    const attributes = new GeometryAttributes.GeometryAttributes({      position: new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,        componentsPerAttribute: 3,        values: positions,      }),    });    if (defaultValue.defined(ellipsoidGeometry._offsetAttribute)) {      const length = positions.length;      const applyOffset = new Uint8Array(length / 3);      const offsetValue =        ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE          ? 0          : 1;      GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);      attributes.applyOffset = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,        componentsPerAttribute: 1,        values: applyOffset,      });    }    return new GeometryAttribute.Geometry({      attributes: attributes,      indices: indices,      primitiveType: GeometryAttribute.PrimitiveType.LINES,      boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid),      offsetAttribute: ellipsoidGeometry._offsetAttribute,    });  };  exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry;}));
 |