| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620 | /* This file is automatically rebuilt by the Cesium build process. */define(['exports', './Matrix2-69c32d33', './RuntimeError-c581ca93', './defaultValue-94c3e563', './WebGLConstants-7dccdc96', './Transforms-323408fe'], (function (exports, Matrix2, RuntimeError, defaultValue, WebGLConstants, Transforms) { 'use strict';  /**   * @private   */  const GeometryType = {    NONE: 0,    TRIANGLES: 1,    LINES: 2,    POLYLINES: 3,  };  var GeometryType$1 = Object.freeze(GeometryType);  /**   * The type of a geometric primitive, i.e., points, lines, and triangles.   *   * @enum {Number}   */  const PrimitiveType = {    /**     * Points primitive where each vertex (or index) is a separate point.     *     * @type {Number}     * @constant     */    POINTS: WebGLConstants.WebGLConstants.POINTS,    /**     * Lines primitive where each two vertices (or indices) is a line segment.  Line segments are not necessarily connected.     *     * @type {Number}     * @constant     */    LINES: WebGLConstants.WebGLConstants.LINES,    /**     * Line loop primitive where each vertex (or index) after the first connects a line to     * the previous vertex, and the last vertex implicitly connects to the first.     *     * @type {Number}     * @constant     */    LINE_LOOP: WebGLConstants.WebGLConstants.LINE_LOOP,    /**     * Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.     *     * @type {Number}     * @constant     */    LINE_STRIP: WebGLConstants.WebGLConstants.LINE_STRIP,    /**     * Triangles primitive where each three vertices (or indices) is a triangle.  Triangles do not necessarily share edges.     *     * @type {Number}     * @constant     */    TRIANGLES: WebGLConstants.WebGLConstants.TRIANGLES,    /**     * Triangle strip primitive where each vertex (or index) after the first two connect to     * the previous two vertices forming a triangle.  For example, this can be used to model a wall.     *     * @type {Number}     * @constant     */    TRIANGLE_STRIP: WebGLConstants.WebGLConstants.TRIANGLE_STRIP,    /**     * Triangle fan primitive where each vertex (or index) after the first two connect to     * the previous vertex and the first vertex forming a triangle.  For example, this can be used     * to model a cone or circle.     *     * @type {Number}     * @constant     */    TRIANGLE_FAN: WebGLConstants.WebGLConstants.TRIANGLE_FAN,  };  /**   * @private   */  PrimitiveType.isLines = function (primitiveType) {    return (      primitiveType === PrimitiveType.LINES ||      primitiveType === PrimitiveType.LINE_LOOP ||      primitiveType === PrimitiveType.LINE_STRIP    );  };  /**   * @private   */  PrimitiveType.isTriangles = function (primitiveType) {    return (      primitiveType === PrimitiveType.TRIANGLES ||      primitiveType === PrimitiveType.TRIANGLE_STRIP ||      primitiveType === PrimitiveType.TRIANGLE_FAN    );  };  /**   * @private   */  PrimitiveType.validate = function (primitiveType) {    return (      primitiveType === PrimitiveType.POINTS ||      primitiveType === PrimitiveType.LINES ||      primitiveType === PrimitiveType.LINE_LOOP ||      primitiveType === PrimitiveType.LINE_STRIP ||      primitiveType === PrimitiveType.TRIANGLES ||      primitiveType === PrimitiveType.TRIANGLE_STRIP ||      primitiveType === PrimitiveType.TRIANGLE_FAN    );  };  var PrimitiveType$1 = Object.freeze(PrimitiveType);  /**   * A geometry representation with attributes forming vertices and optional index data   * defining primitives.  Geometries and an {@link Appearance}, which describes the shading,   * can be assigned to a {@link Primitive} for visualization.  A <code>Primitive</code> can   * be created from many heterogeneous - in many cases - geometries for performance.   * <p>   * Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.   * </p>   *   * @alias Geometry   * @constructor   *   * @param {Object} options Object with the following properties:   * @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.   * @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.   * @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.   * @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.   *   * @see PolygonGeometry   * @see RectangleGeometry   * @see EllipseGeometry   * @see CircleGeometry   * @see WallGeometry   * @see SimplePolylineGeometry   * @see BoxGeometry   * @see EllipsoidGeometry   *   * @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}   *   * @example   * // Create geometry with a position attribute and indexed lines.   * const positions = new Float64Array([   *   0.0, 0.0, 0.0,   *   7500000.0, 0.0, 0.0,   *   0.0, 7500000.0, 0.0   * ]);   *   * const geometry = new Cesium.Geometry({   *   attributes : {   *     position : new Cesium.GeometryAttribute({   *       componentDatatype : Cesium.ComponentDatatype.DOUBLE,   *       componentsPerAttribute : 3,   *       values : positions   *     })   *   },   *   indices : new Uint16Array([0, 1, 1, 2, 2, 0]),   *   primitiveType : Cesium.PrimitiveType.LINES,   *   boundingSphere : Cesium.BoundingSphere.fromVertices(positions)   * });   */  function Geometry(options) {    options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);    //>>includeStart('debug', pragmas.debug);    RuntimeError.Check.typeOf.object("options.attributes", options.attributes);    //>>includeEnd('debug');    /**     * Attributes, which make up the geometry's vertices.  Each property in this object corresponds to a     * {@link GeometryAttribute} containing the attribute's data.     * <p>     * Attributes are always stored non-interleaved in a Geometry.     * </p>     * <p>     * There are reserved attribute names with well-known semantics.  The following attributes     * are created by a Geometry (depending on the provided {@link VertexFormat}.     * <ul>     *    <li><code>position</code> - 3D vertex position.  64-bit floating-point (for precision).  3 components per attribute.  See {@link VertexFormat#position}.</li>     *    <li><code>normal</code> - Normal (normalized), commonly used for lighting.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#normal}.</li>     *    <li><code>st</code> - 2D texture coordinate.  32-bit floating-point.  2 components per attribute.  See {@link VertexFormat#st}.</li>     *    <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#bitangent}.</li>     *    <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping.  32-bit floating-point.  3 components per attribute.  See {@link VertexFormat#tangent}.</li>     * </ul>     * </p>     * <p>     * The following attribute names are generally not created by a Geometry, but are added     * to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare     * the geometry for rendering.     * <ul>     *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>     *    <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>     *    <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>     *    <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}.  32-bit floating-point.  4 components per attribute.</li>     *    <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}.  32-bit floating-point.  4 components per attribute.</li>     *    <li><code>pickColor</code> - RGBA color used for picking.  32-bit floating-point.  4 components per attribute.</li>     * </ul>     * </p>     *     * @type GeometryAttributes     *     * @default undefined     *     *     * @example     * geometry.attributes.position = new Cesium.GeometryAttribute({     *   componentDatatype : Cesium.ComponentDatatype.FLOAT,     *   componentsPerAttribute : 3,     *   values : new Float32Array(0)     * });     *     * @see GeometryAttribute     * @see VertexFormat     */    this.attributes = options.attributes;    /**     * Optional index data that - along with {@link Geometry#primitiveType} -     * determines the primitives in the geometry.     *     * @type Array     *     * @default undefined     */    this.indices = options.indices;    /**     * The type of primitives in the geometry.  This is most often {@link PrimitiveType.TRIANGLES},     * but can varying based on the specific geometry.     *     * @type PrimitiveType     *     * @default undefined     */    this.primitiveType = defaultValue.defaultValue(      options.primitiveType,      PrimitiveType$1.TRIANGLES    );    /**     * An optional bounding sphere that fully encloses the geometry.  This is     * commonly used for culling.     *     * @type BoundingSphere     *     * @default undefined     */    this.boundingSphere = options.boundingSphere;    /**     * @private     */    this.geometryType = defaultValue.defaultValue(options.geometryType, GeometryType$1.NONE);    /**     * @private     */    this.boundingSphereCV = options.boundingSphereCV;    /**     * Used for computing the bounding sphere for geometry using the applyOffset vertex attribute     * @private     */    this.offsetAttribute = options.offsetAttribute;  }  /**   * Computes the number of vertices in a geometry.  The runtime is linear with   * respect to the number of attributes in a vertex, not the number of vertices.   *   * @param {Geometry} geometry The geometry.   * @returns {Number} The number of vertices in the geometry.   *   * @example   * const numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);   */  Geometry.computeNumberOfVertices = function (geometry) {    //>>includeStart('debug', pragmas.debug);    RuntimeError.Check.typeOf.object("geometry", geometry);    //>>includeEnd('debug');    let numberOfVertices = -1;    for (const property in geometry.attributes) {      if (        geometry.attributes.hasOwnProperty(property) &&        defaultValue.defined(geometry.attributes[property]) &&        defaultValue.defined(geometry.attributes[property].values)      ) {        const attribute = geometry.attributes[property];        const num = attribute.values.length / attribute.componentsPerAttribute;        //>>includeStart('debug', pragmas.debug);        if (numberOfVertices !== num && numberOfVertices !== -1) {          throw new RuntimeError.DeveloperError(            "All attribute lists must have the same number of attributes."          );        }        //>>includeEnd('debug');        numberOfVertices = num;      }    }    return numberOfVertices;  };  const rectangleCenterScratch = new Matrix2.Cartographic();  const enuCenterScratch = new Matrix2.Cartesian3();  const fixedFrameToEnuScratch = new Matrix2.Matrix4();  const boundingRectanglePointsCartographicScratch = [    new Matrix2.Cartographic(),    new Matrix2.Cartographic(),    new Matrix2.Cartographic(),  ];  const boundingRectanglePointsEnuScratch = [    new Matrix2.Cartesian2(),    new Matrix2.Cartesian2(),    new Matrix2.Cartesian2(),  ];  const points2DScratch = [new Matrix2.Cartesian2(), new Matrix2.Cartesian2(), new Matrix2.Cartesian2()];  const pointEnuScratch = new Matrix2.Cartesian3();  const enuRotationScratch = new Transforms.Quaternion();  const enuRotationMatrixScratch = new Matrix2.Matrix4();  const rotation2DScratch = new Matrix2.Matrix2();  /**   * For remapping texture coordinates when rendering GroundPrimitives with materials.   * GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.   * However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates   * using different strategies.   *   * This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.   * We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing   * a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"   * system using distances to lines in 2D.   *   * This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,   * but is generally reasonable for polygons and ellipses around the size of USA states.   *   * RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space   * as an intermediary instead of local ENU, which is more accurate for large-area rectangles.   *   * @param {Cartesian3[]} positions Array of positions outlining the geometry   * @param {Number} stRotation Texture coordinate rotation.   * @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.   * @param {Rectangle} boundingRectangle Bounding rectangle around the positions.   * @returns {Number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.   * @private   */  Geometry._textureCoordinateRotationPoints = function (    positions,    stRotation,    ellipsoid,    boundingRectangle  ) {    let i;    // Create a local east-north-up coordinate system centered on the polygon's bounding rectangle.    // Project the southwest, northwest, and southeast corners of the bounding rectangle into the plane of ENU as 2D points.    // These are the equivalents of (0,0), (0,1), and (1,0) in the texture coordiante system computed in ShadowVolumeAppearanceFS,    // aka "ENU texture space."    const rectangleCenter = Matrix2.Rectangle.center(      boundingRectangle,      rectangleCenterScratch    );    const enuCenter = Matrix2.Cartographic.toCartesian(      rectangleCenter,      ellipsoid,      enuCenterScratch    );    const enuToFixedFrame = Transforms.Transforms.eastNorthUpToFixedFrame(      enuCenter,      ellipsoid,      fixedFrameToEnuScratch    );    const fixedFrameToEnu = Matrix2.Matrix4.inverse(      enuToFixedFrame,      fixedFrameToEnuScratch    );    const boundingPointsEnu = boundingRectanglePointsEnuScratch;    const boundingPointsCarto = boundingRectanglePointsCartographicScratch;    boundingPointsCarto[0].longitude = boundingRectangle.west;    boundingPointsCarto[0].latitude = boundingRectangle.south;    boundingPointsCarto[1].longitude = boundingRectangle.west;    boundingPointsCarto[1].latitude = boundingRectangle.north;    boundingPointsCarto[2].longitude = boundingRectangle.east;    boundingPointsCarto[2].latitude = boundingRectangle.south;    let posEnu = pointEnuScratch;    for (i = 0; i < 3; i++) {      Matrix2.Cartographic.toCartesian(boundingPointsCarto[i], ellipsoid, posEnu);      posEnu = Matrix2.Matrix4.multiplyByPointAsVector(fixedFrameToEnu, posEnu, posEnu);      boundingPointsEnu[i].x = posEnu.x;      boundingPointsEnu[i].y = posEnu.y;    }    // Rotate each point in the polygon around the up vector in the ENU by -stRotation and project into ENU as 2D.    // Compute the bounding box of these rotated points in the 2D ENU plane.    // Rotate the corners back by stRotation, then compute their equivalents in the ENU texture space using the corners computed earlier.    const rotation = Transforms.Quaternion.fromAxisAngle(      Matrix2.Cartesian3.UNIT_Z,      -stRotation,      enuRotationScratch    );    const textureMatrix = Matrix2.Matrix3.fromQuaternion(      rotation,      enuRotationMatrixScratch    );    const positionsLength = positions.length;    let enuMinX = Number.POSITIVE_INFINITY;    let enuMinY = Number.POSITIVE_INFINITY;    let enuMaxX = Number.NEGATIVE_INFINITY;    let enuMaxY = Number.NEGATIVE_INFINITY;    for (i = 0; i < positionsLength; i++) {      posEnu = Matrix2.Matrix4.multiplyByPointAsVector(        fixedFrameToEnu,        positions[i],        posEnu      );      posEnu = Matrix2.Matrix3.multiplyByVector(textureMatrix, posEnu, posEnu);      enuMinX = Math.min(enuMinX, posEnu.x);      enuMinY = Math.min(enuMinY, posEnu.y);      enuMaxX = Math.max(enuMaxX, posEnu.x);      enuMaxY = Math.max(enuMaxY, posEnu.y);    }    const toDesiredInComputed = Matrix2.Matrix2.fromRotation(      stRotation,      rotation2DScratch    );    const points2D = points2DScratch;    points2D[0].x = enuMinX;    points2D[0].y = enuMinY;    points2D[1].x = enuMinX;    points2D[1].y = enuMaxY;    points2D[2].x = enuMaxX;    points2D[2].y = enuMinY;    const boundingEnuMin = boundingPointsEnu[0];    const boundingPointsWidth = boundingPointsEnu[2].x - boundingEnuMin.x;    const boundingPointsHeight = boundingPointsEnu[1].y - boundingEnuMin.y;    for (i = 0; i < 3; i++) {      const point2D = points2D[i];      // rotate back      Matrix2.Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);      // Convert point into east-north texture coordinate space      point2D.x = (point2D.x - boundingEnuMin.x) / boundingPointsWidth;      point2D.y = (point2D.y - boundingEnuMin.y) / boundingPointsHeight;    }    const minXYCorner = points2D[0];    const maxYCorner = points2D[1];    const maxXCorner = points2D[2];    const result = new Array(6);    Matrix2.Cartesian2.pack(minXYCorner, result);    Matrix2.Cartesian2.pack(maxYCorner, result, 2);    Matrix2.Cartesian2.pack(maxXCorner, result, 4);    return result;  };  /**   * Values and type information for geometry attributes.  A {@link Geometry}   * generally contains one or more attributes.  All attributes together form   * the geometry's vertices.   *   * @alias GeometryAttribute   * @constructor   *   * @param {Object} [options] Object with the following properties:   * @param {ComponentDatatype} [options.componentDatatype] The datatype of each component in the attribute, e.g., individual elements in values.   * @param {Number} [options.componentsPerAttribute] A number between 1 and 4 that defines the number of components in an attributes.   * @param {Boolean} [options.normalize=false] When <code>true</code> and <code>componentDatatype</code> is an integer format, indicate that the components should be mapped to the range [0, 1] (unsigned) or [-1, 1] (signed) when they are accessed as floating-point for rendering.   * @param {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array} [options.values] The values for the attributes stored in a typed array.   *   * @exception {DeveloperError} options.componentsPerAttribute must be between 1 and 4.   *   *   * @example   * const geometry = new Cesium.Geometry({   *   attributes : {   *     position : new Cesium.GeometryAttribute({   *       componentDatatype : Cesium.ComponentDatatype.FLOAT,   *       componentsPerAttribute : 3,   *       values : new Float32Array([   *         0.0, 0.0, 0.0,   *         7500000.0, 0.0, 0.0,   *         0.0, 7500000.0, 0.0   *       ])   *     })   *   },   *   primitiveType : Cesium.PrimitiveType.LINE_LOOP   * });   *   * @see Geometry   */  function GeometryAttribute(options) {    options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(options.componentDatatype)) {      throw new RuntimeError.DeveloperError("options.componentDatatype is required.");    }    if (!defaultValue.defined(options.componentsPerAttribute)) {      throw new RuntimeError.DeveloperError("options.componentsPerAttribute is required.");    }    if (      options.componentsPerAttribute < 1 ||      options.componentsPerAttribute > 4    ) {      throw new RuntimeError.DeveloperError(        "options.componentsPerAttribute must be between 1 and 4."      );    }    if (!defaultValue.defined(options.values)) {      throw new RuntimeError.DeveloperError("options.values is required.");    }    //>>includeEnd('debug');    /**     * The datatype of each component in the attribute, e.g., individual elements in     * {@link GeometryAttribute#values}.     *     * @type ComponentDatatype     *     * @default undefined     */    this.componentDatatype = options.componentDatatype;    /**     * A number between 1 and 4 that defines the number of components in an attributes.     * For example, a position attribute with x, y, and z components would have 3 as     * shown in the code example.     *     * @type Number     *     * @default undefined     *     * @example     * attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;     * attribute.componentsPerAttribute = 3;     * attribute.values = new Float32Array([     *   0.0, 0.0, 0.0,     *   7500000.0, 0.0, 0.0,     *   0.0, 7500000.0, 0.0     * ]);     */    this.componentsPerAttribute = options.componentsPerAttribute;    /**     * When <code>true</code> and <code>componentDatatype</code> is an integer format,     * indicate that the components should be mapped to the range [0, 1] (unsigned)     * or [-1, 1] (signed) when they are accessed as floating-point for rendering.     * <p>     * This is commonly used when storing colors using {@link ComponentDatatype.UNSIGNED_BYTE}.     * </p>     *     * @type Boolean     *     * @default false     *     * @example     * attribute.componentDatatype = Cesium.ComponentDatatype.UNSIGNED_BYTE;     * attribute.componentsPerAttribute = 4;     * attribute.normalize = true;     * attribute.values = new Uint8Array([     *   Cesium.Color.floatToByte(color.red),     *   Cesium.Color.floatToByte(color.green),     *   Cesium.Color.floatToByte(color.blue),     *   Cesium.Color.floatToByte(color.alpha)     * ]);     */    this.normalize = defaultValue.defaultValue(options.normalize, false);    /**     * The values for the attributes stored in a typed array.  In the code example,     * every three elements in <code>values</code> defines one attributes since     * <code>componentsPerAttribute</code> is 3.     *     * @type {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array}     *     * @default undefined     *     * @example     * attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;     * attribute.componentsPerAttribute = 3;     * attribute.values = new Float32Array([     *   0.0, 0.0, 0.0,     *   7500000.0, 0.0, 0.0,     *   0.0, 7500000.0, 0.0     * ]);     */    this.values = options.values;  }  exports.Geometry = Geometry;  exports.GeometryAttribute = GeometryAttribute;  exports.GeometryType = GeometryType$1;  exports.PrimitiveType = PrimitiveType$1;}));
 |