| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 | /* This file is automatically rebuilt by the Cesium build process. */define(['./defaultValue-94c3e563', './Matrix2-69c32d33', './ArcType-0cf52f8c', './arrayRemoveDuplicates-87160c89', './Transforms-323408fe', './Color-d6e135b0', './ComponentDatatype-b1ea011a', './RuntimeError-c581ca93', './GeometryAttribute-cb73bb3f', './GeometryAttributes-7df9bef6', './IndexDatatype-c4099fe9', './PolylinePipeline-aa50e501', './VertexFormat-e46f29d6', './_commonjsHelpers-3aae1032-f55dc0c4', './combine-761d9c3f', './WebGLConstants-7dccdc96', './EllipsoidGeodesic-98096082', './EllipsoidRhumbLine-5cb6da82', './IntersectionTests-d5d945ac', './Plane-069b6800'], (function (defaultValue, Matrix2, ArcType, arrayRemoveDuplicates, Transforms, Color, ComponentDatatype, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, PolylinePipeline, VertexFormat, _commonjsHelpers3aae1032, combine, WebGLConstants, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, Plane) { 'use strict';  const scratchInterpolateColorsArray = [];  function interpolateColors(p0, p1, color0, color1, numPoints) {    const colors = scratchInterpolateColorsArray;    colors.length = numPoints;    let i;    const r0 = color0.red;    const g0 = color0.green;    const b0 = color0.blue;    const a0 = color0.alpha;    const r1 = color1.red;    const g1 = color1.green;    const b1 = color1.blue;    const a1 = color1.alpha;    if (Color.Color.equals(color0, color1)) {      for (i = 0; i < numPoints; i++) {        colors[i] = Color.Color.clone(color0);      }      return colors;    }    const redPerVertex = (r1 - r0) / numPoints;    const greenPerVertex = (g1 - g0) / numPoints;    const bluePerVertex = (b1 - b0) / numPoints;    const alphaPerVertex = (a1 - a0) / numPoints;    for (i = 0; i < numPoints; i++) {      colors[i] = new Color.Color(        r0 + i * redPerVertex,        g0 + i * greenPerVertex,        b0 + i * bluePerVertex,        a0 + i * alphaPerVertex      );    }    return colors;  }  /**   * A description of a polyline modeled as a line strip; the first two positions define a line segment,   * and each additional position defines a line segment from the previous position. The polyline is capable of   * displaying with a material.   *   * @alias PolylineGeometry   * @constructor   *   * @param {Object} options Object with the following properties:   * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip.   * @param {Number} [options.width=1.0] The width in pixels.   * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors.   * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices.   * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow.   * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer.   * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.   * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.   *   * @exception {DeveloperError} At least two positions are required.   * @exception {DeveloperError} width must be greater than or equal to one.   * @exception {DeveloperError} colors has an invalid length.   *   * @see PolylineGeometry#createGeometry   *   * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo}   *   * @example   * // A polyline with two connected line segments   * const polyline = new Cesium.PolylineGeometry({   *   positions : Cesium.Cartesian3.fromDegreesArray([   *     0.0, 0.0,   *     5.0, 0.0,   *     5.0, 5.0   *   ]),   *   width : 10.0   * });   * const geometry = Cesium.PolylineGeometry.createGeometry(polyline);   */  function PolylineGeometry(options) {    options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);    const positions = options.positions;    const colors = options.colors;    const width = defaultValue.defaultValue(options.width, 1.0);    const colorsPerVertex = defaultValue.defaultValue(options.colorsPerVertex, false);    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(positions) || positions.length < 2) {      throw new RuntimeError.DeveloperError("At least two positions are required.");    }    if (typeof width !== "number") {      throw new RuntimeError.DeveloperError("width must be a number");    }    if (      defaultValue.defined(colors) &&      ((colorsPerVertex && colors.length < positions.length) ||        (!colorsPerVertex && colors.length < positions.length - 1))    ) {      throw new RuntimeError.DeveloperError("colors has an invalid length.");    }    //>>includeEnd('debug');    this._positions = positions;    this._colors = colors;    this._width = width;    this._colorsPerVertex = colorsPerVertex;    this._vertexFormat = VertexFormat.VertexFormat.clone(      defaultValue.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT)    );    this._arcType = defaultValue.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);    this._granularity = defaultValue.defaultValue(      options.granularity,      ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE    );    this._ellipsoid = Matrix2.Ellipsoid.clone(      defaultValue.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84)    );    this._workerName = "createPolylineGeometry";    let numComponents = 1 + positions.length * Matrix2.Cartesian3.packedLength;    numComponents += defaultValue.defined(colors) ? 1 + colors.length * Color.Color.packedLength : 1;    /**     * The number of elements used to pack the object into an array.     * @type {Number}     */    this.packedLength =      numComponents + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 4;  }  /**   * Stores the provided instance into the provided array.   *   * @param {PolylineGeometry} value The value to pack.   * @param {Number[]} array The array to pack into.   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.   *   * @returns {Number[]} The array that was packed into   */  PolylineGeometry.pack = function (value, array, startingIndex) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(value)) {      throw new RuntimeError.DeveloperError("value is required");    }    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    let i;    const positions = value._positions;    let length = positions.length;    array[startingIndex++] = length;    for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {      Matrix2.Cartesian3.pack(positions[i], array, startingIndex);    }    const colors = value._colors;    length = defaultValue.defined(colors) ? colors.length : 0.0;    array[startingIndex++] = length;    for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {      Color.Color.pack(colors[i], array, startingIndex);    }    Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);    startingIndex += Matrix2.Ellipsoid.packedLength;    VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);    startingIndex += VertexFormat.VertexFormat.packedLength;    array[startingIndex++] = value._width;    array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;    array[startingIndex++] = value._arcType;    array[startingIndex] = value._granularity;    return array;  };  const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);  const scratchVertexFormat = new VertexFormat.VertexFormat();  const scratchOptions = {    positions: undefined,    colors: undefined,    ellipsoid: scratchEllipsoid,    vertexFormat: scratchVertexFormat,    width: undefined,    colorsPerVertex: undefined,    arcType: undefined,    granularity: undefined,  };  /**   * Retrieves an instance from a packed array.   *   * @param {Number[]} array The packed array.   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.   * @param {PolylineGeometry} [result] The object into which to store the result.   * @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided.   */  PolylineGeometry.unpack = function (array, startingIndex, result) {    //>>includeStart('debug', pragmas.debug);    if (!defaultValue.defined(array)) {      throw new RuntimeError.DeveloperError("array is required");    }    //>>includeEnd('debug');    startingIndex = defaultValue.defaultValue(startingIndex, 0);    let i;    let length = array[startingIndex++];    const positions = new Array(length);    for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {      positions[i] = Matrix2.Cartesian3.unpack(array, startingIndex);    }    length = array[startingIndex++];    const colors = length > 0 ? new Array(length) : undefined;    for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {      colors[i] = Color.Color.unpack(array, startingIndex);    }    const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);    startingIndex += Matrix2.Ellipsoid.packedLength;    const vertexFormat = VertexFormat.VertexFormat.unpack(      array,      startingIndex,      scratchVertexFormat    );    startingIndex += VertexFormat.VertexFormat.packedLength;    const width = array[startingIndex++];    const colorsPerVertex = array[startingIndex++] === 1.0;    const arcType = array[startingIndex++];    const granularity = array[startingIndex];    if (!defaultValue.defined(result)) {      scratchOptions.positions = positions;      scratchOptions.colors = colors;      scratchOptions.width = width;      scratchOptions.colorsPerVertex = colorsPerVertex;      scratchOptions.arcType = arcType;      scratchOptions.granularity = granularity;      return new PolylineGeometry(scratchOptions);    }    result._positions = positions;    result._colors = colors;    result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);    result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);    result._width = width;    result._colorsPerVertex = colorsPerVertex;    result._arcType = arcType;    result._granularity = granularity;    return result;  };  const scratchCartesian3 = new Matrix2.Cartesian3();  const scratchPosition = new Matrix2.Cartesian3();  const scratchPrevPosition = new Matrix2.Cartesian3();  const scratchNextPosition = new Matrix2.Cartesian3();  /**   * Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere.   *   * @param {PolylineGeometry} polylineGeometry A description of the polyline.   * @returns {Geometry|undefined} The computed vertices and indices.   */  PolylineGeometry.createGeometry = function (polylineGeometry) {    const width = polylineGeometry._width;    const vertexFormat = polylineGeometry._vertexFormat;    let colors = polylineGeometry._colors;    const colorsPerVertex = polylineGeometry._colorsPerVertex;    const arcType = polylineGeometry._arcType;    const granularity = polylineGeometry._granularity;    const ellipsoid = polylineGeometry._ellipsoid;    let i;    let j;    let k;    const removedIndices = [];    let positions = arrayRemoveDuplicates.arrayRemoveDuplicates(      polylineGeometry._positions,      Matrix2.Cartesian3.equalsEpsilon,      false,      removedIndices    );    if (defaultValue.defined(colors) && removedIndices.length > 0) {      let removedArrayIndex = 0;      let nextRemovedIndex = removedIndices[0];      colors = colors.filter(function (color, index) {        let remove = false;        if (colorsPerVertex) {          remove =            index === nextRemovedIndex || (index === 0 && nextRemovedIndex === 1);        } else {          remove = index + 1 === nextRemovedIndex;        }        if (remove) {          removedArrayIndex++;          nextRemovedIndex = removedIndices[removedArrayIndex];          return false;        }        return true;      });    }    let positionsLength = positions.length;    // A width of a pixel or less is not a valid geometry, but in order to support external data    // that may have errors we treat this as an empty geometry.    if (positionsLength < 2 || width <= 0.0) {      return undefined;    }    if (arcType === ArcType.ArcType.GEODESIC || arcType === ArcType.ArcType.RHUMB) {      let subdivisionSize;      let numberOfPointsFunction;      if (arcType === ArcType.ArcType.GEODESIC) {        subdivisionSize = ComponentDatatype.CesiumMath.chordLength(          granularity,          ellipsoid.maximumRadius        );        numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPoints;      } else {        subdivisionSize = granularity;        numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPointsRhumbLine;      }      const heights = PolylinePipeline.PolylinePipeline.extractHeights(positions, ellipsoid);      if (defaultValue.defined(colors)) {        let colorLength = 1;        for (i = 0; i < positionsLength - 1; ++i) {          colorLength += numberOfPointsFunction(            positions[i],            positions[i + 1],            subdivisionSize          );        }        const newColors = new Array(colorLength);        let newColorIndex = 0;        for (i = 0; i < positionsLength - 1; ++i) {          const p0 = positions[i];          const p1 = positions[i + 1];          const c0 = colors[i];          const numColors = numberOfPointsFunction(p0, p1, subdivisionSize);          if (colorsPerVertex && i < colorLength) {            const c1 = colors[i + 1];            const interpolatedColors = interpolateColors(              p0,              p1,              c0,              c1,              numColors            );            const interpolatedColorsLength = interpolatedColors.length;            for (j = 0; j < interpolatedColorsLength; ++j) {              newColors[newColorIndex++] = interpolatedColors[j];            }          } else {            for (j = 0; j < numColors; ++j) {              newColors[newColorIndex++] = Color.Color.clone(c0);            }          }        }        newColors[newColorIndex] = Color.Color.clone(colors[colors.length - 1]);        colors = newColors;        scratchInterpolateColorsArray.length = 0;      }      if (arcType === ArcType.ArcType.GEODESIC) {        positions = PolylinePipeline.PolylinePipeline.generateCartesianArc({          positions: positions,          minDistance: subdivisionSize,          ellipsoid: ellipsoid,          height: heights,        });      } else {        positions = PolylinePipeline.PolylinePipeline.generateCartesianRhumbArc({          positions: positions,          granularity: subdivisionSize,          ellipsoid: ellipsoid,          height: heights,        });      }    }    positionsLength = positions.length;    const size = positionsLength * 4.0 - 4.0;    const finalPositions = new Float64Array(size * 3);    const prevPositions = new Float64Array(size * 3);    const nextPositions = new Float64Array(size * 3);    const expandAndWidth = new Float32Array(size * 2);    const st = vertexFormat.st ? new Float32Array(size * 2) : undefined;    const finalColors = defaultValue.defined(colors) ? new Uint8Array(size * 4) : undefined;    let positionIndex = 0;    let expandAndWidthIndex = 0;    let stIndex = 0;    let colorIndex = 0;    let position;    for (j = 0; j < positionsLength; ++j) {      if (j === 0) {        position = scratchCartesian3;        Matrix2.Cartesian3.subtract(positions[0], positions[1], position);        Matrix2.Cartesian3.add(positions[0], position, position);      } else {        position = positions[j - 1];      }      Matrix2.Cartesian3.clone(position, scratchPrevPosition);      Matrix2.Cartesian3.clone(positions[j], scratchPosition);      if (j === positionsLength - 1) {        position = scratchCartesian3;        Matrix2.Cartesian3.subtract(          positions[positionsLength - 1],          positions[positionsLength - 2],          position        );        Matrix2.Cartesian3.add(positions[positionsLength - 1], position, position);      } else {        position = positions[j + 1];      }      Matrix2.Cartesian3.clone(position, scratchNextPosition);      let color0, color1;      if (defaultValue.defined(finalColors)) {        if (j !== 0 && !colorsPerVertex) {          color0 = colors[j - 1];        } else {          color0 = colors[j];        }        if (j !== positionsLength - 1) {          color1 = colors[j];        }      }      const startK = j === 0 ? 2 : 0;      const endK = j === positionsLength - 1 ? 2 : 4;      for (k = startK; k < endK; ++k) {        Matrix2.Cartesian3.pack(scratchPosition, finalPositions, positionIndex);        Matrix2.Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex);        Matrix2.Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex);        positionIndex += 3;        const direction = k - 2 < 0 ? -1.0 : 1.0;        expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction        expandAndWidth[expandAndWidthIndex++] = direction * width;        if (vertexFormat.st) {          st[stIndex++] = j / (positionsLength - 1);          st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0);        }        if (defaultValue.defined(finalColors)) {          const color = k < 2 ? color0 : color1;          finalColors[colorIndex++] = Color.Color.floatToByte(color.red);          finalColors[colorIndex++] = Color.Color.floatToByte(color.green);          finalColors[colorIndex++] = Color.Color.floatToByte(color.blue);          finalColors[colorIndex++] = Color.Color.floatToByte(color.alpha);        }      }    }    const attributes = new GeometryAttributes.GeometryAttributes();    attributes.position = new GeometryAttribute.GeometryAttribute({      componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: finalPositions,    });    attributes.prevPosition = new GeometryAttribute.GeometryAttribute({      componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: prevPositions,    });    attributes.nextPosition = new GeometryAttribute.GeometryAttribute({      componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: nextPositions,    });    attributes.expandAndWidth = new GeometryAttribute.GeometryAttribute({      componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,      componentsPerAttribute: 2,      values: expandAndWidth,    });    if (vertexFormat.st) {      attributes.st = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,        componentsPerAttribute: 2,        values: st,      });    }    if (defaultValue.defined(finalColors)) {      attributes.color = new GeometryAttribute.GeometryAttribute({        componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,        componentsPerAttribute: 4,        values: finalColors,        normalize: true,      });    }    const indices = IndexDatatype.IndexDatatype.createTypedArray(size, positionsLength * 6 - 6);    let index = 0;    let indicesIndex = 0;    const length = positionsLength - 1.0;    for (j = 0; j < length; ++j) {      indices[indicesIndex++] = index;      indices[indicesIndex++] = index + 2;      indices[indicesIndex++] = index + 1;      indices[indicesIndex++] = index + 1;      indices[indicesIndex++] = index + 2;      indices[indicesIndex++] = index + 3;      index += 4;    }    return new GeometryAttribute.Geometry({      attributes: attributes,      indices: indices,      primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,      boundingSphere: Transforms.BoundingSphere.fromPoints(positions),      geometryType: GeometryAttribute.GeometryType.POLYLINES,    });  };  function createPolylineGeometry(polylineGeometry, offset) {    if (defaultValue.defined(offset)) {      polylineGeometry = PolylineGeometry.unpack(polylineGeometry, offset);    }    polylineGeometry._ellipsoid = Matrix2.Ellipsoid.clone(polylineGeometry._ellipsoid);    return PolylineGeometry.createGeometry(polylineGeometry);  }  return createPolylineGeometry;}));
 |