| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844 | /** * Immutable data encourages pure functions (data-in, data-out) and lends itself * to much simpler application development and enabling techniques from * functional programming such as lazy evaluation. * * While designed to bring these powerful functional concepts to JavaScript, it * presents an Object-Oriented API familiar to Javascript engineers and closely * mirroring that of Array, Map, and Set. It is easy and efficient to convert to * and from plain Javascript types. * * ## How to read these docs * * In order to better explain what kinds of values the Immutable.js API expects * and produces, this documentation is presented in a statically typed dialect of * JavaScript (like [Flow][] or [TypeScript][]). You *don't need* to use these * type checking tools in order to use Immutable.js, however becoming familiar * with their syntax will help you get a deeper understanding of this API. * * **A few examples and how to read them.** * * All methods describe the kinds of data they accept and the kinds of data * they return. For example a function which accepts two numbers and returns * a number would look like this: * * ```js * sum(first: number, second: number): number * ``` * * Sometimes, methods can accept different kinds of data or return different * kinds of data, and this is described with a *type variable*, which is * typically in all-caps. For example, a function which always returns the same * kind of data it was provided would look like this: * * ```js * identity<T>(value: T): T * ``` * * Type variables are defined with classes and referred to in methods. For * example, a class that holds onto a value for you might look like this: * * ```js * class Box<T> { *   constructor(value: T) *   getValue(): T * } * ``` * * In order to manipulate Immutable data, methods that we're used to affecting * a Collection instead return a new Collection of the same type. The type * `this` refers to the same kind of class. For example, a List which returns * new Lists when you `push` a value onto it might look like: * * ```js * class List<T> { *   push(value: T): this * } * ``` * * Many methods in Immutable.js accept values which implement the JavaScript * [Iterable][] protocol, and might appear like `Iterable<string>` for something * which represents sequence of strings. Typically in JavaScript we use plain * Arrays (`[]`) when an Iterable is expected, but also all of the Immutable.js * collections are iterable themselves! * * For example, to get a value deep within a structure of data, we might use * `getIn` which expects an `Iterable` path: * * ``` * getIn(path: Iterable<string | number>): unknown * ``` * * To use this method, we could pass an array: `data.getIn([ "key", 2 ])`. * * * Note: All examples are presented in the modern [ES2015][] version of * JavaScript. Use tools like Babel to support older browsers. * * For example: * * ```js * // ES2015 * const mappedFoo = foo.map(x => x * x); * // ES5 * var mappedFoo = foo.map(function (x) { return x * x; }); * ``` * * [ES2015]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla * [TypeScript]: https://www.typescriptlang.org/ * [Flow]: https://flowtype.org/ * [Iterable]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols */declare namespace Immutable {  /**   * @ignore   *   * Used to convert deeply all immutable types to a plain TS type.   * Using `unknown` on object instead of recursive call as we have a circular reference issue   */  export type DeepCopy<T> = T extends Record<infer R>    ? // convert Record to DeepCopy plain JS object      {        [key in keyof R]: R[key] extends object ? unknown : R[key];      }    : T extends Collection.Keyed<infer KeyedKey, infer V>    ? // convert KeyedCollection to DeepCopy plain JS object      {        [key in KeyedKey extends string | number | symbol          ? KeyedKey          : string]: V extends object ? unknown : V;      }    : // convert IndexedCollection or Immutable.Set to DeepCopy plain JS array    T extends Collection<infer _, infer V>    ? Array<V extends object ? unknown : V>    : T extends string | number // Iterable scalar types : should be kept as is    ? T    : T extends Iterable<infer V> // Iterable are converted to plain JS array    ? Array<V extends object ? unknown : V>    : T extends object // plain JS object are converted deeply    ? {        [ObjectKey in keyof T]: T[ObjectKey] extends object          ? unknown          : T[ObjectKey];      }    : // other case : should be kept as is      T;  /**   * Lists are ordered indexed dense collections, much like a JavaScript   * Array.   *   * Lists are immutable and fully persistent with O(log32 N) gets and sets,   * and O(1) push and pop.   *   * Lists implement Deque, with efficient addition and removal from both the   * end (`push`, `pop`) and beginning (`unshift`, `shift`).   *   * Unlike a JavaScript Array, there is no distinction between an   * "unset" index and an index set to `undefined`. `List#forEach` visits all   * indices from 0 to size, regardless of whether they were explicitly defined.   */  namespace List {    /**     * True if the provided value is a List     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable');     * List.isList([]); // false     * List.isList(List()); // true     * ```     */    function isList(maybeList: unknown): maybeList is List<unknown>;    /**     * Creates a new List containing `values`.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable');     * List.of(1, 2, 3, 4)     * // List [ 1, 2, 3, 4 ]     * ```     *     * Note: Values are not altered or converted in any way.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable');     * List.of({x:1}, 2, [3], 4)     * // List [ { x: 1 }, 2, [ 3 ], 4 ]     * ```     */    function of<T>(...values: Array<T>): List<T>;  }  /**   * Create a new immutable List containing the values of the provided   * collection-like.   *   * Note: `List` is a factory function and not a class, and does not use the   * `new` keyword during construction.   *   * <!-- runkit:activate -->   * ```js   * const { List, Set } = require('immutable')   *   * const emptyList = List()   * // List []   *   * const plainArray = [ 1, 2, 3, 4 ]   * const listFromPlainArray = List(plainArray)   * // List [ 1, 2, 3, 4 ]   *   * const plainSet = Set([ 1, 2, 3, 4 ])   * const listFromPlainSet = List(plainSet)   * // List [ 1, 2, 3, 4 ]   *   * const arrayIterator = plainArray[Symbol.iterator]()   * const listFromCollectionArray = List(arrayIterator)   * // List [ 1, 2, 3, 4 ]   *   * listFromPlainArray.equals(listFromCollectionArray) // true   * listFromPlainSet.equals(listFromCollectionArray) // true   * listFromPlainSet.equals(listFromPlainArray) // true   * ```   */  function List<T>(collection?: Iterable<T> | ArrayLike<T>): List<T>;  interface List<T> extends Collection.Indexed<T> {    /**     * The number of items in this List.     */    readonly size: number;    // Persistent changes    /**     * Returns a new List which includes `value` at `index`. If `index` already     * exists in this List, it will be replaced.     *     * `index` may be a negative number, which indexes back from the end of the     * List. `v.set(-1, "value")` sets the last item in the List.     *     * If `index` larger than `size`, the returned List's `size` will be large     * enough to include the `index`.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * const originalList = List([ 0 ]);     * // List [ 0 ]     * originalList.set(1, 1);     * // List [ 0, 1 ]     * originalList.set(0, 'overwritten');     * // List [ "overwritten" ]     * originalList.set(2, 2);     * // List [ 0, undefined, 2 ]     *     * List().set(50000, 'value').size;     * // 50001     * ```     *     * Note: `set` can be used in `withMutations`.     */    set(index: number, value: T): List<T>;    /**     * Returns a new List which excludes this `index` and with a size 1 less     * than this List. Values at indices above `index` are shifted down by 1 to     * fill the position.     *     * This is synonymous with `list.splice(index, 1)`.     *     * `index` may be a negative number, which indexes back from the end of the     * List. `v.delete(-1)` deletes the last item in the List.     *     * Note: `delete` cannot be safely used in IE8     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 0, 1, 2, 3, 4 ]).delete(0);     * // List [ 1, 2, 3, 4 ]     * ```     *     * Since `delete()` re-indexes values, it produces a complete copy, which     * has `O(N)` complexity.     *     * Note: `delete` *cannot* be used in `withMutations`.     *     * @alias remove     */    delete(index: number): List<T>;    remove(index: number): List<T>;    /**     * Returns a new List with `value` at `index` with a size 1 more than this     * List. Values at indices above `index` are shifted over by 1.     *     * This is synonymous with `list.splice(index, 0, value)`.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 0, 1, 2, 3, 4 ]).insert(6, 5)     * // List [ 0, 1, 2, 3, 4, 5 ]     * ```     *     * Since `insert()` re-indexes values, it produces a complete copy, which     * has `O(N)` complexity.     *     * Note: `insert` *cannot* be used in `withMutations`.     */    insert(index: number, value: T): List<T>;    /**     * Returns a new List with 0 size and no values in constant time.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 1, 2, 3, 4 ]).clear()     * // List []     * ```     *     * Note: `clear` can be used in `withMutations`.     */    clear(): List<T>;    /**     * Returns a new List with the provided `values` appended, starting at this     * List's `size`.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 1, 2, 3, 4 ]).push(5)     * // List [ 1, 2, 3, 4, 5 ]     * ```     *     * Note: `push` can be used in `withMutations`.     */    push(...values: Array<T>): List<T>;    /**     * Returns a new List with a size ones less than this List, excluding     * the last index in this List.     *     * Note: this differs from `Array#pop` because it returns a new     * List rather than the removed value. Use `last()` to get the last value     * in this List.     *     * ```js     * List([ 1, 2, 3, 4 ]).pop()     * // List[ 1, 2, 3 ]     * ```     *     * Note: `pop` can be used in `withMutations`.     */    pop(): List<T>;    /**     * Returns a new List with the provided `values` prepended, shifting other     * values ahead to higher indices.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 2, 3, 4]).unshift(1);     * // List [ 1, 2, 3, 4 ]     * ```     *     * Note: `unshift` can be used in `withMutations`.     */    unshift(...values: Array<T>): List<T>;    /**     * Returns a new List with a size ones less than this List, excluding     * the first index in this List, shifting all other values to a lower index.     *     * Note: this differs from `Array#shift` because it returns a new     * List rather than the removed value. Use `first()` to get the first     * value in this List.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 0, 1, 2, 3, 4 ]).shift();     * // List [ 1, 2, 3, 4 ]     * ```     *     * Note: `shift` can be used in `withMutations`.     */    shift(): List<T>;    /**     * Returns a new List with an updated value at `index` with the return     * value of calling `updater` with the existing value, or `notSetValue` if     * `index` was not set. If called with a single argument, `updater` is     * called with the List itself.     *     * `index` may be a negative number, which indexes back from the end of the     * List. `v.update(-1)` updates the last item in the List.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * const list = List([ 'a', 'b', 'c' ])     * const result = list.update(2, val => val.toUpperCase())     * // List [ "a", "b", "C" ]     * ```     *     * This can be very useful as a way to "chain" a normal function into a     * sequence of methods. RxJS calls this "let" and lodash calls it "thru".     *     * For example, to sum a List after mapping and filtering:     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * function sum(collection) {     *   return collection.reduce((sum, x) => sum + x, 0)     * }     *     * List([ 1, 2, 3 ])     *   .map(x => x + 1)     *   .filter(x => x % 2 === 0)     *   .update(sum)     * // 6     * ```     *     * Note: `update(index)` can be used in `withMutations`.     *     * @see `Map#update`     */    update(index: number, notSetValue: T, updater: (value: T) => T): this;    update(index: number, updater: (value: T | undefined) => T): this;    update<R>(updater: (value: this) => R): R;    /**     * Returns a new List with size `size`. If `size` is less than this     * List's size, the new List will exclude values at the higher indices.     * If `size` is greater than this List's size, the new List will have     * undefined values for the newly available indices.     *     * When building a new List and the final size is known up front, `setSize`     * used in conjunction with `withMutations` may result in the more     * performant construction.     */    setSize(size: number): List<T>;    // Deep persistent changes    /**     * Returns a new List having set `value` at this `keyPath`. If any keys in     * `keyPath` do not exist, a new immutable Map will be created at that key.     *     * Index numbers are used as keys to determine the path to follow in     * the List.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * const list = List([ 0, 1, 2, List([ 3, 4 ])])     * list.setIn([3, 0], 999);     * // List [ 0, 1, 2, List [ 999, 4 ] ]     * ```     *     * Plain JavaScript Object or Arrays may be nested within an Immutable.js     * Collection, and setIn() can update those values as well, treating them     * immutably by creating new copies of those values with the changes applied.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * const list = List([ 0, 1, 2, { plain: 'object' }])     * list.setIn([3, 'plain'], 'value');     * // List([ 0, 1, 2, { plain: 'value' }])     * ```     *     * Note: `setIn` can be used in `withMutations`.     */    setIn(keyPath: Iterable<unknown>, value: unknown): this;    /**     * Returns a new List having removed the value at this `keyPath`. If any     * keys in `keyPath` do not exist, no change will occur.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * const list = List([ 0, 1, 2, List([ 3, 4 ])])     * list.deleteIn([3, 0]);     * // List [ 0, 1, 2, List [ 4 ] ]     * ```     *     * Plain JavaScript Object or Arrays may be nested within an Immutable.js     * Collection, and removeIn() can update those values as well, treating them     * immutably by creating new copies of those values with the changes applied.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * const list = List([ 0, 1, 2, { plain: 'object' }])     * list.removeIn([3, 'plain']);     * // List([ 0, 1, 2, {}])     * ```     *     * Note: `deleteIn` *cannot* be safely used in `withMutations`.     *     * @alias removeIn     */    deleteIn(keyPath: Iterable<unknown>): this;    removeIn(keyPath: Iterable<unknown>): this;    /**     * Note: `updateIn` can be used in `withMutations`.     *     * @see `Map#updateIn`     */    updateIn(      keyPath: Iterable<unknown>,      notSetValue: unknown,      updater: (value: unknown) => unknown    ): this;    updateIn(      keyPath: Iterable<unknown>,      updater: (value: unknown) => unknown    ): this;    /**     * Note: `mergeIn` can be used in `withMutations`.     *     * @see `Map#mergeIn`     */    mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;    /**     * Note: `mergeDeepIn` can be used in `withMutations`.     *     * @see `Map#mergeDeepIn`     */    mergeDeepIn(      keyPath: Iterable<unknown>,      ...collections: Array<unknown>    ): this;    // Transient changes    /**     * Note: Not all methods can be safely used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * allows being used in `withMutations`.     *     * @see `Map#withMutations`     */    withMutations(mutator: (mutable: this) => unknown): this;    /**     * An alternative API for withMutations()     *     * Note: Not all methods can be safely used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * allows being used in `withMutations`.     *     * @see `Map#asMutable`     */    asMutable(): this;    /**     * @see `Map#wasAltered`     */    wasAltered(): boolean;    /**     * @see `Map#asImmutable`     */    asImmutable(): this;    // Sequence algorithms    /**     * Returns a new List with other values or collections concatenated to this one.     *     * Note: `concat` can be used in `withMutations`.     *     * @alias merge     */    concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): List<T | C>;    merge<C>(...collections: Array<Iterable<C>>): List<T | C>;    /**     * Returns a new List with values passed through a     * `mapper` function.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * List([ 1, 2 ]).map(x => 10 * x)     * // List [ 10, 20 ]     * ```     */    map<M>(      mapper: (value: T, key: number, iter: this) => M,      context?: unknown    ): List<M>;    /**     * Flat-maps the List, returning a new List.     *     * Similar to `list.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: T, key: number, iter: this) => Iterable<M>,      context?: unknown    ): List<M>;    /**     * Returns a new List with only the values for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends T>(      predicate: (value: T, index: number, iter: this) => value is F,      context?: unknown    ): List<F>;    filter(      predicate: (value: T, index: number, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new List with the values for which the `predicate`     * function returns false and another for which is returns true.     */    partition<F extends T, C>(      predicate: (this: C, value: T, index: number, iter: this) => value is F,      context?: C    ): [List<T>, List<F>];    partition<C>(      predicate: (this: C, value: T, index: number, iter: this) => unknown,      context?: C    ): [this, this];    /**     * Returns a List "zipped" with the provided collection.     *     * Like `zipWith`, but using the default `zipper`: creating an `Array`.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * const a = List([ 1, 2, 3 ]);     * const b = List([ 4, 5, 6 ]);     * const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]     * ```     */    zip<U>(other: Collection<unknown, U>): List<[T, U]>;    zip<U, V>(      other: Collection<unknown, U>,      other2: Collection<unknown, V>    ): List<[T, U, V]>;    zip(...collections: Array<Collection<unknown, unknown>>): List<unknown>;    /**     * Returns a List "zipped" with the provided collections.     *     * Unlike `zip`, `zipAll` continues zipping until the longest collection is     * exhausted. Missing values from shorter collections are filled with `undefined`.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * const a = List([ 1, 2 ]);     * const b = List([ 3, 4, 5 ]);     * const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]     * ```     *     * Note: Since zipAll will return a collection as large as the largest     * input, some results may contain undefined values. TypeScript cannot     * account for these without cases (as of v2.5).     */    zipAll<U>(other: Collection<unknown, U>): List<[T, U]>;    zipAll<U, V>(      other: Collection<unknown, U>,      other2: Collection<unknown, V>    ): List<[T, U, V]>;    zipAll(...collections: Array<Collection<unknown, unknown>>): List<unknown>;    /**     * Returns a List "zipped" with the provided collections by using a     * custom `zipper` function.     *     * <!-- runkit:activate     *      { "preamble": "const { List } = require('immutable');" }     * -->     * ```js     * const a = List([ 1, 2, 3 ]);     * const b = List([ 4, 5, 6 ]);     * const c = a.zipWith((a, b) => a + b, b);     * // List [ 5, 7, 9 ]     * ```     */    zipWith<U, Z>(      zipper: (value: T, otherValue: U) => Z,      otherCollection: Collection<unknown, U>    ): List<Z>;    zipWith<U, V, Z>(      zipper: (value: T, otherValue: U, thirdValue: V) => Z,      otherCollection: Collection<unknown, U>,      thirdCollection: Collection<unknown, V>    ): List<Z>;    zipWith<Z>(      zipper: (...values: Array<unknown>) => Z,      ...collections: Array<Collection<unknown, unknown>>    ): List<Z>;  }  /**   * Immutable Map is an unordered Collection.Keyed of (key, value) pairs with   * `O(log32 N)` gets and `O(log32 N)` persistent sets.   *   * Iteration order of a Map is undefined, however is stable. Multiple   * iterations of the same Map will iterate in the same order.   *   * Map's keys can be of any type, and use `Immutable.is` to determine key   * equality. This allows the use of any value (including NaN) as a key.   *   * Because `Immutable.is` returns equality based on value semantics, and   * Immutable collections are treated as values, any Immutable collection may   * be used as a key.   *   * <!-- runkit:activate -->   * ```js   * const { Map, List } = require('immutable');   * Map().set(List([ 1 ]), 'listofone').get(List([ 1 ]));   * // 'listofone'   * ```   *   * Any JavaScript object may be used as a key, however strict identity is used   * to evaluate key equality. Two similar looking objects will represent two   * different keys.   *   * Implemented by a hash-array mapped trie.   */  namespace Map {    /**     * True if the provided value is a Map     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map.isMap({}) // false     * Map.isMap(Map()) // true     * ```     */    function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>;    /**     * Creates a new Map from alternating keys and values     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map.of(     *   'key', 'value',     *   'numerical value', 3,     *    0, 'numerical key'     * )     * // Map { 0: "numerical key", "key": "value", "numerical value": 3 }     * ```     *     * @deprecated Use Map([ [ 'k', 'v' ] ]) or Map({ k: 'v' })     */    function of(...keyValues: Array<unknown>): Map<unknown, unknown>;  }  /**   * Creates a new Immutable Map.   *   * Created with the same key value pairs as the provided Collection.Keyed or   * JavaScript Object or expects a Collection of [K, V] tuple entries.   *   * Note: `Map` is a factory function and not a class, and does not use the   * `new` keyword during construction.   *   * <!-- runkit:activate -->   * ```js   * const { Map } = require('immutable')   * Map({ key: "value" })   * Map([ [ "key", "value" ] ])   * ```   *   * Keep in mind, when using JS objects to construct Immutable Maps, that   * JavaScript Object properties are always strings, even if written in a   * quote-less shorthand, while Immutable Maps accept keys of any type.   *   * <!-- runkit:activate   *      { "preamble": "const { Map } = require('immutable');" }   * -->   * ```js   * let obj = { 1: "one" }   * Object.keys(obj) // [ "1" ]   * assert.equal(obj["1"], obj[1]) // "one" === "one"   *   * let map = Map(obj)   * assert.notEqual(map.get("1"), map.get(1)) // "one" !== undefined   * ```   *   * Property access for JavaScript Objects first converts the key to a string,   * but since Immutable Map keys can be of any type the argument to `get()` is   * not altered.   */  function Map<K, V>(collection?: Iterable<[K, V]>): Map<K, V>;  function Map<V>(obj: { [key: string]: V }): Map<string, V>;  function Map<K extends string | symbol, V>(obj: { [P in K]?: V }): Map<K, V>;  interface Map<K, V> extends Collection.Keyed<K, V> {    /**     * The number of entries in this Map.     */    readonly size: number;    // Persistent changes    /**     * Returns a new Map also containing the new key, value pair. If an equivalent     * key already exists in this Map, it will be replaced.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const originalMap = Map()     * const newerMap = originalMap.set('key', 'value')     * const newestMap = newerMap.set('key', 'newer value')     *     * originalMap     * // Map {}     * newerMap     * // Map { "key": "value" }     * newestMap     * // Map { "key": "newer value" }     * ```     *     * Note: `set` can be used in `withMutations`.     */    set(key: K, value: V): this;    /**     * Returns a new Map which excludes this `key`.     *     * Note: `delete` cannot be safely used in IE8, but is provided to mirror     * the ES6 collection API.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const originalMap = Map({     *   key: 'value',     *   otherKey: 'other value'     * })     * // Map { "key": "value", "otherKey": "other value" }     * originalMap.delete('otherKey')     * // Map { "key": "value" }     * ```     *     * Note: `delete` can be used in `withMutations`.     *     * @alias remove     */    delete(key: K): this;    remove(key: K): this;    /**     * Returns a new Map which excludes the provided `keys`.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const names = Map({ a: "Aaron", b: "Barry", c: "Connor" })     * names.deleteAll([ 'a', 'c' ])     * // Map { "b": "Barry" }     * ```     *     * Note: `deleteAll` can be used in `withMutations`.     *     * @alias removeAll     */    deleteAll(keys: Iterable<K>): this;    removeAll(keys: Iterable<K>): this;    /**     * Returns a new Map containing no keys or values.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map({ key: 'value' }).clear()     * // Map {}     * ```     *     * Note: `clear` can be used in `withMutations`.     */    clear(): this;    /**     * Returns a new Map having updated the value at this `key` with the return     * value of calling `updater` with the existing value.     *     * Similar to: `map.set(key, updater(map.get(key)))`.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const aMap = Map({ key: 'value' })     * const newMap = aMap.update('key', value => value + value)     * // Map { "key": "valuevalue" }     * ```     *     * This is most commonly used to call methods on collections within a     * structure of data. For example, in order to `.push()` onto a nested `List`,     * `update` and `push` can be used together:     *     * <!-- runkit:activate     *      { "preamble": "const { Map, List } = require('immutable');" }     * -->     * ```js     * const aMap = Map({ nestedList: List([ 1, 2, 3 ]) })     * const newMap = aMap.update('nestedList', list => list.push(4))     * // Map { "nestedList": List [ 1, 2, 3, 4 ] }     * ```     *     * When a `notSetValue` is provided, it is provided to the `updater`     * function when the value at the key does not exist in the Map.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable');" }     * -->     * ```js     * const aMap = Map({ key: 'value' })     * const newMap = aMap.update('noKey', 'no value', value => value + value)     * // Map { "key": "value", "noKey": "no valueno value" }     * ```     *     * However, if the `updater` function returns the same value it was called     * with, then no change will occur. This is still true if `notSetValue`     * is provided.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable');" }     * -->     * ```js     * const aMap = Map({ apples: 10 })     * const newMap = aMap.update('oranges', 0, val => val)     * // Map { "apples": 10 }     * assert.strictEqual(newMap, map);     * ```     *     * For code using ES2015 or later, using `notSetValue` is discourged in     * favor of function parameter default values. This helps to avoid any     * potential confusion with identify functions as described above.     *     * The previous example behaves differently when written with default values:     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable');" }     * -->     * ```js     * const aMap = Map({ apples: 10 })     * const newMap = aMap.update('oranges', (val = 0) => val)     * // Map { "apples": 10, "oranges": 0 }     * ```     *     * If no key is provided, then the `updater` function return value is     * returned as well.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable');" }     * -->     * ```js     * const aMap = Map({ key: 'value' })     * const result = aMap.update(aMap => aMap.get('key'))     * // "value"     * ```     *     * This can be very useful as a way to "chain" a normal function into a     * sequence of methods. RxJS calls this "let" and lodash calls it "thru".     *     * For example, to sum the values in a Map     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable');" }     * -->     * ```js     * function sum(collection) {     *   return collection.reduce((sum, x) => sum + x, 0)     * }     *     * Map({ x: 1, y: 2, z: 3 })     *   .map(x => x + 1)     *   .filter(x => x % 2 === 0)     *   .update(sum)     * // 6     * ```     *     * Note: `update(key)` can be used in `withMutations`.     */    update(key: K, notSetValue: V, updater: (value: V) => V): this;    update(key: K, updater: (value: V | undefined) => V): this;    update<R>(updater: (value: this) => R): R;    /**     * Returns a new Map resulting from merging the provided Collections     * (or JS objects) into this Map. In other words, this takes each entry of     * each collection and sets it on this Map.     *     * Note: Values provided to `merge` are shallowly converted before being     * merged. No nested values are altered.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const one = Map({ a: 10, b: 20, c: 30 })     * const two = Map({ b: 40, a: 50, d: 60 })     * one.merge(two) // Map { "a": 50, "b": 40, "c": 30, "d": 60 }     * two.merge(one) // Map { "b": 20, "a": 10, "d": 60, "c": 30 }     * ```     *     * Note: `merge` can be used in `withMutations`.     *     * @alias concat     */    merge<KC, VC>(      ...collections: Array<Iterable<[KC, VC]>>    ): Map<K | KC, V | VC>;    merge<C>(      ...collections: Array<{ [key: string]: C }>    ): Map<K | string, V | C>;    concat<KC, VC>(      ...collections: Array<Iterable<[KC, VC]>>    ): Map<K | KC, V | VC>;    concat<C>(      ...collections: Array<{ [key: string]: C }>    ): Map<K | string, V | C>;    /**     * Like `merge()`, `mergeWith()` returns a new Map resulting from merging     * the provided Collections (or JS objects) into this Map, but uses the     * `merger` function for dealing with conflicts.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const one = Map({ a: 10, b: 20, c: 30 })     * const two = Map({ b: 40, a: 50, d: 60 })     * one.mergeWith((oldVal, newVal) => oldVal / newVal, two)     * // { "a": 0.2, "b": 0.5, "c": 30, "d": 60 }     * two.mergeWith((oldVal, newVal) => oldVal / newVal, one)     * // { "b": 2, "a": 5, "d": 60, "c": 30 }     * ```     *     * Note: `mergeWith` can be used in `withMutations`.     */    mergeWith(      merger: (oldVal: V, newVal: V, key: K) => V,      ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>    ): this;    /**     * Like `merge()`, but when two compatible collections are encountered with     * the same key, it merges them as well, recursing deeply through the nested     * data. Two collections are considered to be compatible (and thus will be     * merged together) if they both fall into one of three categories: keyed     * (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and     * arrays), or set-like (e.g., `Set`s). If they fall into separate     * categories, `mergeDeep` will replace the existing collection with the     * collection being merged in. This behavior can be customized by using     * `mergeDeepWith()`.     *     * Note: Indexed and set-like collections are merged using     * `concat()`/`union()` and therefore do not recurse.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })     * const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })     * one.mergeDeep(two)     * // Map {     * //   "a": Map { "x": 2, "y": 10 },     * //   "b": Map { "x": 20, "y": 5 },     * //   "c": Map { "z": 3 }     * // }     * ```     *     * Note: `mergeDeep` can be used in `withMutations`.     */    mergeDeep(      ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>    ): this;    /**     * Like `mergeDeep()`, but when two non-collections or incompatible     * collections are encountered at the same key, it uses the `merger`     * function to determine the resulting value. Collections are considered     * incompatible if they fall into separate categories between keyed,     * indexed, and set-like.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })     * const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })     * one.mergeDeepWith((oldVal, newVal) => oldVal / newVal, two)     * // Map {     * //   "a": Map { "x": 5, "y": 10 },     * //   "b": Map { "x": 20, "y": 10 },     * //   "c": Map { "z": 3 }     * // }     * ```     *     * Note: `mergeDeepWith` can be used in `withMutations`.     */    mergeDeepWith(      merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,      ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>    ): this;    // Deep persistent changes    /**     * Returns a new Map having set `value` at this `keyPath`. If any keys in     * `keyPath` do not exist, a new immutable Map will be created at that key.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const originalMap = Map({     *   subObject: Map({     *     subKey: 'subvalue',     *     subSubObject: Map({     *       subSubKey: 'subSubValue'     *     })     *   })     * })     *     * const newMap = originalMap.setIn(['subObject', 'subKey'], 'ha ha!')     * // Map {     * //   "subObject": Map {     * //     "subKey": "ha ha!",     * //     "subSubObject": Map { "subSubKey": "subSubValue" }     * //   }     * // }     *     * const newerMap = originalMap.setIn(     *   ['subObject', 'subSubObject', 'subSubKey'],     *   'ha ha ha!'     * )     * // Map {     * //   "subObject": Map {     * //     "subKey": "subvalue",     * //     "subSubObject": Map { "subSubKey": "ha ha ha!" }     * //   }     * // }     * ```     *     * Plain JavaScript Object or Arrays may be nested within an Immutable.js     * Collection, and setIn() can update those values as well, treating them     * immutably by creating new copies of those values with the changes applied.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const originalMap = Map({     *   subObject: {     *     subKey: 'subvalue',     *     subSubObject: {     *       subSubKey: 'subSubValue'     *     }     *   }     * })     *     * originalMap.setIn(['subObject', 'subKey'], 'ha ha!')     * // Map {     * //   "subObject": {     * //     subKey: "ha ha!",     * //     subSubObject: { subSubKey: "subSubValue" }     * //   }     * // }     * ```     *     * If any key in the path exists but cannot be updated (such as a primitive     * like number or a custom Object like Date), an error will be thrown.     *     * Note: `setIn` can be used in `withMutations`.     */    setIn(keyPath: Iterable<unknown>, value: unknown): this;    /**     * Returns a new Map having removed the value at this `keyPath`. If any keys     * in `keyPath` do not exist, no change will occur.     *     * Note: `deleteIn` can be used in `withMutations`.     *     * @alias removeIn     */    deleteIn(keyPath: Iterable<unknown>): this;    removeIn(keyPath: Iterable<unknown>): this;    /**     * Returns a new Map having applied the `updater` to the entry found at the     * keyPath.     *     * This is most commonly used to call methods on collections nested within a     * structure of data. For example, in order to `.push()` onto a nested `List`,     * `updateIn` and `push` can be used together:     *     * <!-- runkit:activate -->     * ```js     * const { Map, List } = require('immutable')     * const map = Map({ inMap: Map({ inList: List([ 1, 2, 3 ]) }) })     * const newMap = map.updateIn(['inMap', 'inList'], list => list.push(4))     * // Map { "inMap": Map { "inList": List [ 1, 2, 3, 4 ] } }     * ```     *     * If any keys in `keyPath` do not exist, new Immutable `Map`s will     * be created at those keys. If the `keyPath` does not already contain a     * value, the `updater` function will be called with `notSetValue`, if     * provided, otherwise `undefined`.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable')" }     * -->     * ```js     * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })     * const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2)     * // Map { "a": Map { "b": Map { "c": 20 } } }     * ```     *     * If the `updater` function returns the same value it was called with, then     * no change will occur. This is still true if `notSetValue` is provided.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable')" }     * -->     * ```js     * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })     * const newMap = map.updateIn(['a', 'b', 'x'], 100, val => val)     * // Map { "a": Map { "b": Map { "c": 10 } } }     * assert.strictEqual(newMap, aMap)     * ```     *     * For code using ES2015 or later, using `notSetValue` is discourged in     * favor of function parameter default values. This helps to avoid any     * potential confusion with identify functions as described above.     *     * The previous example behaves differently when written with default values:     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable')" }     * -->     * ```js     * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })     * const newMap = map.updateIn(['a', 'b', 'x'], (val = 100) => val)     * // Map { "a": Map { "b": Map { "c": 10, "x": 100 } } }     * ```     *     * Plain JavaScript Object or Arrays may be nested within an Immutable.js     * Collection, and updateIn() can update those values as well, treating them     * immutably by creating new copies of those values with the changes applied.     *     * <!-- runkit:activate     *      { "preamble": "const { Map } = require('immutable')" }     * -->     * ```js     * const map = Map({ a: { b: { c: 10 } } })     * const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2)     * // Map { "a": { b: { c: 20 } } }     * ```     *     * If any key in the path exists but cannot be updated (such as a primitive     * like number or a custom Object like Date), an error will be thrown.     *     * Note: `updateIn` can be used in `withMutations`.     */    updateIn(      keyPath: Iterable<unknown>,      notSetValue: unknown,      updater: (value: unknown) => unknown    ): this;    updateIn(      keyPath: Iterable<unknown>,      updater: (value: unknown) => unknown    ): this;    /**     * A combination of `updateIn` and `merge`, returning a new Map, but     * performing the merge at a point arrived at by following the keyPath.     * In other words, these two lines are equivalent:     *     * ```js     * map.updateIn(['a', 'b', 'c'], abc => abc.merge(y))     * map.mergeIn(['a', 'b', 'c'], y)     * ```     *     * Note: `mergeIn` can be used in `withMutations`.     */    mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;    /**     * A combination of `updateIn` and `mergeDeep`, returning a new Map, but     * performing the deep merge at a point arrived at by following the keyPath.     * In other words, these two lines are equivalent:     *     * ```js     * map.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y))     * map.mergeDeepIn(['a', 'b', 'c'], y)     * ```     *     * Note: `mergeDeepIn` can be used in `withMutations`.     */    mergeDeepIn(      keyPath: Iterable<unknown>,      ...collections: Array<unknown>    ): this;    // Transient changes    /**     * Every time you call one of the above functions, a new immutable Map is     * created. If a pure function calls a number of these to produce a final     * return value, then a penalty on performance and memory has been paid by     * creating all of the intermediate immutable Maps.     *     * If you need to apply a series of mutations to produce a new immutable     * Map, `withMutations()` creates a temporary mutable copy of the Map which     * can apply mutations in a highly performant manner. In fact, this is     * exactly how complex mutations like `merge` are done.     *     * As an example, this results in the creation of 2, not 4, new Maps:     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const map1 = Map()     * const map2 = map1.withMutations(map => {     *   map.set('a', 1).set('b', 2).set('c', 3)     * })     * assert.equal(map1.size, 0)     * assert.equal(map2.size, 3)     * ```     *     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Read the documentation for each method to see if it     * is safe to use in `withMutations`.     */    withMutations(mutator: (mutable: this) => unknown): this;    /**     * Another way to avoid creation of intermediate Immutable maps is to create     * a mutable copy of this collection. Mutable copies *always* return `this`,     * and thus shouldn't be used for equality. Your function should never return     * a mutable copy of a collection, only use it internally to create a new     * collection.     *     * If possible, use `withMutations` to work with temporary mutable copies as     * it provides an easier to use API and considers many common optimizations.     *     * Note: if the collection is already mutable, `asMutable` returns itself.     *     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Read the documentation for each method to see if it     * is safe to use in `withMutations`.     *     * @see `Map#asImmutable`     */    asMutable(): this;    /**     * Returns true if this is a mutable copy (see `asMutable()`) and mutative     * alterations have been applied.     *     * @see `Map#asMutable`     */    wasAltered(): boolean;    /**     * The yin to `asMutable`'s yang. Because it applies to mutable collections,     * this operation is *mutable* and may return itself (though may not     * return itself, i.e. if the result is an empty collection). Once     * performed, the original mutable copy must no longer be mutated since it     * may be the immutable result.     *     * If possible, use `withMutations` to work with temporary mutable copies as     * it provides an easier to use API and considers many common optimizations.     *     * @see `Map#asMutable`     */    asImmutable(): this;    // Sequence algorithms    /**     * Returns a new Map with values passed through a     * `mapper` function.     *     *     Map({ a: 1, b: 2 }).map(x => 10 * x)     *     // Map { a: 10, b: 20 }     */    map<M>(      mapper: (value: V, key: K, iter: this) => M,      context?: unknown    ): Map<K, M>;    /**     * @see Collection.Keyed.mapKeys     */    mapKeys<M>(      mapper: (key: K, value: V, iter: this) => M,      context?: unknown    ): Map<M, V>;    /**     * @see Collection.Keyed.mapEntries     */    mapEntries<KM, VM>(      mapper: (        entry: [K, V],        index: number,        iter: this      ) => [KM, VM] | undefined,      context?: unknown    ): Map<KM, VM>;    /**     * Flat-maps the Map, returning a new Map.     *     * Similar to `data.map(...).flatten(true)`.     */    flatMap<KM, VM>(      mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,      context?: unknown    ): Map<KM, VM>;    /**     * Returns a new Map with only the entries for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends V>(      predicate: (value: V, key: K, iter: this) => value is F,      context?: unknown    ): Map<K, F>;    filter(      predicate: (value: V, key: K, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new Map with the values for which the `predicate`     * function returns false and another for which is returns true.     */    partition<F extends V, C>(      predicate: (this: C, value: V, key: K, iter: this) => value is F,      context?: C    ): [Map<K, V>, Map<K, F>];    partition<C>(      predicate: (this: C, value: V, key: K, iter: this) => unknown,      context?: C    ): [this, this];    /**     * @see Collection.Keyed.flip     */    flip(): Map<V, K>;  }  /**   * A type of Map that has the additional guarantee that the iteration order of   * entries will be the order in which they were set().   *   * The iteration behavior of OrderedMap is the same as native ES6 Map and   * JavaScript Object.   *   * Note that `OrderedMap` are more expensive than non-ordered `Map` and may   * consume more memory. `OrderedMap#set` is amortized O(log32 N), but not   * stable.   */  namespace OrderedMap {    /**     * True if the provided value is an OrderedMap.     */    function isOrderedMap(      maybeOrderedMap: unknown    ): maybeOrderedMap is OrderedMap<unknown, unknown>;  }  /**   * Creates a new Immutable OrderedMap.   *   * Created with the same key value pairs as the provided Collection.Keyed or   * JavaScript Object or expects a Collection of [K, V] tuple entries.   *   * The iteration order of key-value pairs provided to this constructor will   * be preserved in the OrderedMap.   *   *     let newOrderedMap = OrderedMap({key: "value"})   *     let newOrderedMap = OrderedMap([["key", "value"]])   *   * Note: `OrderedMap` is a factory function and not a class, and does not use   * the `new` keyword during construction.   */  function OrderedMap<K, V>(collection?: Iterable<[K, V]>): OrderedMap<K, V>;  function OrderedMap<V>(obj: { [key: string]: V }): OrderedMap<string, V>;  interface OrderedMap<K, V> extends Map<K, V> {    /**     * The number of entries in this OrderedMap.     */    readonly size: number;    /**     * Returns a new OrderedMap also containing the new key, value pair. If an     * equivalent key already exists in this OrderedMap, it will be replaced     * while maintaining the existing order.     *     * <!-- runkit:activate -->     * ```js     * const { OrderedMap } = require('immutable')     * const originalMap = OrderedMap({a:1, b:1, c:1})     * const updatedMap = originalMap.set('b', 2)     *     * originalMap     * // OrderedMap {a: 1, b: 1, c: 1}     * updatedMap     * // OrderedMap {a: 1, b: 2, c: 1}     * ```     *     * Note: `set` can be used in `withMutations`.     */    set(key: K, value: V): this;    /**     * Returns a new OrderedMap resulting from merging the provided Collections     * (or JS objects) into this OrderedMap. In other words, this takes each     * entry of each collection and sets it on this OrderedMap.     *     * Note: Values provided to `merge` are shallowly converted before being     * merged. No nested values are altered.     *     * <!-- runkit:activate -->     * ```js     * const { OrderedMap } = require('immutable')     * const one = OrderedMap({ a: 10, b: 20, c: 30 })     * const two = OrderedMap({ b: 40, a: 50, d: 60 })     * one.merge(two) // OrderedMap { "a": 50, "b": 40, "c": 30, "d": 60 }     * two.merge(one) // OrderedMap { "b": 20, "a": 10, "d": 60, "c": 30 }     * ```     *     * Note: `merge` can be used in `withMutations`.     *     * @alias concat     */    merge<KC, VC>(      ...collections: Array<Iterable<[KC, VC]>>    ): OrderedMap<K | KC, V | VC>;    merge<C>(      ...collections: Array<{ [key: string]: C }>    ): OrderedMap<K | string, V | C>;    concat<KC, VC>(      ...collections: Array<Iterable<[KC, VC]>>    ): OrderedMap<K | KC, V | VC>;    concat<C>(      ...collections: Array<{ [key: string]: C }>    ): OrderedMap<K | string, V | C>;    // Sequence algorithms    /**     * Returns a new OrderedMap with values passed through a     * `mapper` function.     *     *     OrderedMap({ a: 1, b: 2 }).map(x => 10 * x)     *     // OrderedMap { "a": 10, "b": 20 }     *     * Note: `map()` always returns a new instance, even if it produced the same     * value at every step.     */    map<M>(      mapper: (value: V, key: K, iter: this) => M,      context?: unknown    ): OrderedMap<K, M>;    /**     * @see Collection.Keyed.mapKeys     */    mapKeys<M>(      mapper: (key: K, value: V, iter: this) => M,      context?: unknown    ): OrderedMap<M, V>;    /**     * @see Collection.Keyed.mapEntries     */    mapEntries<KM, VM>(      mapper: (        entry: [K, V],        index: number,        iter: this      ) => [KM, VM] | undefined,      context?: unknown    ): OrderedMap<KM, VM>;    /**     * Flat-maps the OrderedMap, returning a new OrderedMap.     *     * Similar to `data.map(...).flatten(true)`.     */    flatMap<KM, VM>(      mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,      context?: unknown    ): OrderedMap<KM, VM>;    /**     * Returns a new OrderedMap with only the entries for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends V>(      predicate: (value: V, key: K, iter: this) => value is F,      context?: unknown    ): OrderedMap<K, F>;    filter(      predicate: (value: V, key: K, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new OrderedMap with the values for which the `predicate`     * function returns false and another for which is returns true.     */    partition<F extends V, C>(      predicate: (this: C, value: V, key: K, iter: this) => value is F,      context?: C    ): [OrderedMap<K, V>, OrderedMap<K, F>];    partition<C>(      predicate: (this: C, value: V, key: K, iter: this) => unknown,      context?: C    ): [this, this];    /**     * @see Collection.Keyed.flip     */    flip(): OrderedMap<V, K>;  }  /**   * A Collection of unique values with `O(log32 N)` adds and has.   *   * When iterating a Set, the entries will be (value, value) pairs. Iteration   * order of a Set is undefined, however is stable. Multiple iterations of the   * same Set will iterate in the same order.   *   * Set values, like Map keys, may be of any type. Equality is determined using   * `Immutable.is`, enabling Sets to uniquely include other Immutable   * collections, custom value types, and NaN.   */  namespace Set {    /**     * True if the provided value is a Set     */    function isSet(maybeSet: unknown): maybeSet is Set<unknown>;    /**     * Creates a new Set containing `values`.     */    function of<T>(...values: Array<T>): Set<T>;    /**     * `Set.fromKeys()` creates a new immutable Set containing the keys from     * this Collection or JavaScript Object.     */    function fromKeys<T>(iter: Collection<T, unknown>): Set<T>;    function fromKeys(obj: { [key: string]: unknown }): Set<string>;    /**     * `Set.intersect()` creates a new immutable Set that is the intersection of     * a collection of other sets.     *     * ```js     * const { Set } = require('immutable')     * const intersected = Set.intersect([     *   Set([ 'a', 'b', 'c' ])     *   Set([ 'c', 'a', 't' ])     * ])     * // Set [ "a", "c" ]     * ```     */    function intersect<T>(sets: Iterable<Iterable<T>>): Set<T>;    /**     * `Set.union()` creates a new immutable Set that is the union of a     * collection of other sets.     *     * ```js     * const { Set } = require('immutable')     * const unioned = Set.union([     *   Set([ 'a', 'b', 'c' ])     *   Set([ 'c', 'a', 't' ])     * ])     * // Set [ "a", "b", "c", "t" ]     * ```     */    function union<T>(sets: Iterable<Iterable<T>>): Set<T>;  }  /**   * Create a new immutable Set containing the values of the provided   * collection-like.   *   * Note: `Set` is a factory function and not a class, and does not use the   * `new` keyword during construction.   */  function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Set<T>;  interface Set<T> extends Collection.Set<T> {    /**     * The number of items in this Set.     */    readonly size: number;    // Persistent changes    /**     * Returns a new Set which also includes this value.     *     * Note: `add` can be used in `withMutations`.     */    add(value: T): this;    /**     * Returns a new Set which excludes this value.     *     * Note: `delete` can be used in `withMutations`.     *     * Note: `delete` **cannot** be safely used in IE8, use `remove` if     * supporting old browsers.     *     * @alias remove     */    delete(value: T): this;    remove(value: T): this;    /**     * Returns a new Set containing no values.     *     * Note: `clear` can be used in `withMutations`.     */    clear(): this;    /**     * Returns a Set including any value from `collections` that does not already     * exist in this Set.     *     * Note: `union` can be used in `withMutations`.     * @alias merge     * @alias concat     */    union<C>(...collections: Array<Iterable<C>>): Set<T | C>;    merge<C>(...collections: Array<Iterable<C>>): Set<T | C>;    concat<C>(...collections: Array<Iterable<C>>): Set<T | C>;    /**     * Returns a Set which has removed any values not also contained     * within `collections`.     *     * Note: `intersect` can be used in `withMutations`.     */    intersect(...collections: Array<Iterable<T>>): this;    /**     * Returns a Set excluding any values contained within `collections`.     *     * <!-- runkit:activate -->     * ```js     * const { OrderedSet } = require('immutable')     * OrderedSet([ 1, 2, 3 ]).subtract([1, 3])     * // OrderedSet [2]     * ```     *     * Note: `subtract` can be used in `withMutations`.     */    subtract(...collections: Array<Iterable<T>>): this;    // Transient changes    /**     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * mentions being safe to use in `withMutations`.     *     * @see `Map#withMutations`     */    withMutations(mutator: (mutable: this) => unknown): this;    /**     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * mentions being safe to use in `withMutations`.     *     * @see `Map#asMutable`     */    asMutable(): this;    /**     * @see `Map#wasAltered`     */    wasAltered(): boolean;    /**     * @see `Map#asImmutable`     */    asImmutable(): this;    // Sequence algorithms    /**     * Returns a new Set with values passed through a     * `mapper` function.     *     *     Set([1,2]).map(x => 10 * x)     *     // Set [10,20]     */    map<M>(      mapper: (value: T, key: T, iter: this) => M,      context?: unknown    ): Set<M>;    /**     * Flat-maps the Set, returning a new Set.     *     * Similar to `set.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: T, key: T, iter: this) => Iterable<M>,      context?: unknown    ): Set<M>;    /**     * Returns a new Set with only the values for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends T>(      predicate: (value: T, key: T, iter: this) => value is F,      context?: unknown    ): Set<F>;    filter(      predicate: (value: T, key: T, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new Set with the values for which the `predicate` function     * returns false and another for which is returns true.     */    partition<F extends T, C>(      predicate: (this: C, value: T, key: T, iter: this) => value is F,      context?: C    ): [Set<T>, Set<F>];    partition<C>(      predicate: (this: C, value: T, key: T, iter: this) => unknown,      context?: C    ): [this, this];  }  /**   * A type of Set that has the additional guarantee that the iteration order of   * values will be the order in which they were `add`ed.   *   * The iteration behavior of OrderedSet is the same as native ES6 Set.   *   * Note that `OrderedSet` are more expensive than non-ordered `Set` and may   * consume more memory. `OrderedSet#add` is amortized O(log32 N), but not   * stable.   */  namespace OrderedSet {    /**     * True if the provided value is an OrderedSet.     */    function isOrderedSet(maybeOrderedSet: unknown): boolean;    /**     * Creates a new OrderedSet containing `values`.     */    function of<T>(...values: Array<T>): OrderedSet<T>;    /**     * `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing     * the keys from this Collection or JavaScript Object.     */    function fromKeys<T>(iter: Collection<T, unknown>): OrderedSet<T>;    function fromKeys(obj: { [key: string]: unknown }): OrderedSet<string>;  }  /**   * Create a new immutable OrderedSet containing the values of the provided   * collection-like.   *   * Note: `OrderedSet` is a factory function and not a class, and does not use   * the `new` keyword during construction.   */  function OrderedSet<T>(    collection?: Iterable<T> | ArrayLike<T>  ): OrderedSet<T>;  interface OrderedSet<T> extends Set<T> {    /**     * The number of items in this OrderedSet.     */    readonly size: number;    /**     * Returns an OrderedSet including any value from `collections` that does     * not already exist in this OrderedSet.     *     * Note: `union` can be used in `withMutations`.     * @alias merge     * @alias concat     */    union<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;    merge<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;    concat<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;    // Sequence algorithms    /**     * Returns a new Set with values passed through a     * `mapper` function.     *     *     OrderedSet([ 1, 2 ]).map(x => 10 * x)     *     // OrderedSet [10, 20]     */    map<M>(      mapper: (value: T, key: T, iter: this) => M,      context?: unknown    ): OrderedSet<M>;    /**     * Flat-maps the OrderedSet, returning a new OrderedSet.     *     * Similar to `set.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: T, key: T, iter: this) => Iterable<M>,      context?: unknown    ): OrderedSet<M>;    /**     * Returns a new OrderedSet with only the values for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends T>(      predicate: (value: T, key: T, iter: this) => value is F,      context?: unknown    ): OrderedSet<F>;    filter(      predicate: (value: T, key: T, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new OrderedSet with the values for which the `predicate`     * function returns false and another for which is returns true.     */    partition<F extends T, C>(      predicate: (this: C, value: T, key: T, iter: this) => value is F,      context?: C    ): [OrderedSet<T>, OrderedSet<F>];    partition<C>(      predicate: (this: C, value: T, key: T, iter: this) => unknown,      context?: C    ): [this, this];    /**     * Returns an OrderedSet of the same type "zipped" with the provided     * collections.     *     * Like `zipWith`, but using the default `zipper`: creating an `Array`.     *     * ```js     * const a = OrderedSet([ 1, 2, 3 ])     * const b = OrderedSet([ 4, 5, 6 ])     * const c = a.zip(b)     * // OrderedSet [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]     * ```     */    zip<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>;    zip<U, V>(      other1: Collection<unknown, U>,      other2: Collection<unknown, V>    ): OrderedSet<[T, U, V]>;    zip(      ...collections: Array<Collection<unknown, unknown>>    ): OrderedSet<unknown>;    /**     * Returns a OrderedSet of the same type "zipped" with the provided     * collections.     *     * Unlike `zip`, `zipAll` continues zipping until the longest collection is     * exhausted. Missing values from shorter collections are filled with `undefined`.     *     * ```js     * const a = OrderedSet([ 1, 2 ]);     * const b = OrderedSet([ 3, 4, 5 ]);     * const c = a.zipAll(b); // OrderedSet [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]     * ```     *     * Note: Since zipAll will return a collection as large as the largest     * input, some results may contain undefined values. TypeScript cannot     * account for these without cases (as of v2.5).     */    zipAll<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>;    zipAll<U, V>(      other1: Collection<unknown, U>,      other2: Collection<unknown, V>    ): OrderedSet<[T, U, V]>;    zipAll(      ...collections: Array<Collection<unknown, unknown>>    ): OrderedSet<unknown>;    /**     * Returns an OrderedSet of the same type "zipped" with the provided     * collections by using a custom `zipper` function.     *     * @see Seq.Indexed.zipWith     */    zipWith<U, Z>(      zipper: (value: T, otherValue: U) => Z,      otherCollection: Collection<unknown, U>    ): OrderedSet<Z>;    zipWith<U, V, Z>(      zipper: (value: T, otherValue: U, thirdValue: V) => Z,      otherCollection: Collection<unknown, U>,      thirdCollection: Collection<unknown, V>    ): OrderedSet<Z>;    zipWith<Z>(      zipper: (...values: Array<unknown>) => Z,      ...collections: Array<Collection<unknown, unknown>>    ): OrderedSet<Z>;  }  /**   * Stacks are indexed collections which support very efficient O(1) addition   * and removal from the front using `unshift(v)` and `shift()`.   *   * For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but   * be aware that they also operate on the front of the list, unlike List or   * a JavaScript Array.   *   * Note: `reverse()` or any inherent reverse traversal (`reduceRight`,   * `lastIndexOf`, etc.) is not efficient with a Stack.   *   * Stack is implemented with a Single-Linked List.   */  namespace Stack {    /**     * True if the provided value is a Stack     */    function isStack(maybeStack: unknown): maybeStack is Stack<unknown>;    /**     * Creates a new Stack containing `values`.     */    function of<T>(...values: Array<T>): Stack<T>;  }  /**   * Create a new immutable Stack containing the values of the provided   * collection-like.   *   * The iteration order of the provided collection is preserved in the   * resulting `Stack`.   *   * Note: `Stack` is a factory function and not a class, and does not use the   * `new` keyword during construction.   */  function Stack<T>(collection?: Iterable<T> | ArrayLike<T>): Stack<T>;  interface Stack<T> extends Collection.Indexed<T> {    /**     * The number of items in this Stack.     */    readonly size: number;    // Reading values    /**     * Alias for `Stack.first()`.     */    peek(): T | undefined;    // Persistent changes    /**     * Returns a new Stack with 0 size and no values.     *     * Note: `clear` can be used in `withMutations`.     */    clear(): Stack<T>;    /**     * Returns a new Stack with the provided `values` prepended, shifting other     * values ahead to higher indices.     *     * This is very efficient for Stack.     *     * Note: `unshift` can be used in `withMutations`.     */    unshift(...values: Array<T>): Stack<T>;    /**     * Like `Stack#unshift`, but accepts a collection rather than varargs.     *     * Note: `unshiftAll` can be used in `withMutations`.     */    unshiftAll(iter: Iterable<T>): Stack<T>;    /**     * Returns a new Stack with a size ones less than this Stack, excluding     * the first item in this Stack, shifting all other values to a lower index.     *     * Note: this differs from `Array#shift` because it returns a new     * Stack rather than the removed value. Use `first()` or `peek()` to get the     * first value in this Stack.     *     * Note: `shift` can be used in `withMutations`.     */    shift(): Stack<T>;    /**     * Alias for `Stack#unshift` and is not equivalent to `List#push`.     */    push(...values: Array<T>): Stack<T>;    /**     * Alias for `Stack#unshiftAll`.     */    pushAll(iter: Iterable<T>): Stack<T>;    /**     * Alias for `Stack#shift` and is not equivalent to `List#pop`.     */    pop(): Stack<T>;    // Transient changes    /**     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * mentions being safe to use in `withMutations`.     *     * @see `Map#withMutations`     */    withMutations(mutator: (mutable: this) => unknown): this;    /**     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Check the documentation for each method to see if it     * mentions being safe to use in `withMutations`.     *     * @see `Map#asMutable`     */    asMutable(): this;    /**     * @see `Map#wasAltered`     */    wasAltered(): boolean;    /**     * @see `Map#asImmutable`     */    asImmutable(): this;    // Sequence algorithms    /**     * Returns a new Stack with other collections concatenated to this one.     */    concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): Stack<T | C>;    /**     * Returns a new Stack with values passed through a     * `mapper` function.     *     *     Stack([ 1, 2 ]).map(x => 10 * x)     *     // Stack [ 10, 20 ]     *     * Note: `map()` always returns a new instance, even if it produced the same     * value at every step.     */    map<M>(      mapper: (value: T, key: number, iter: this) => M,      context?: unknown    ): Stack<M>;    /**     * Flat-maps the Stack, returning a new Stack.     *     * Similar to `stack.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: T, key: number, iter: this) => Iterable<M>,      context?: unknown    ): Stack<M>;    /**     * Returns a new Set with only the values for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends T>(      predicate: (value: T, index: number, iter: this) => value is F,      context?: unknown    ): Set<F>;    filter(      predicate: (value: T, index: number, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a Stack "zipped" with the provided collections.     *     * Like `zipWith`, but using the default `zipper`: creating an `Array`.     *     * ```js     * const a = Stack([ 1, 2, 3 ]);     * const b = Stack([ 4, 5, 6 ]);     * const c = a.zip(b); // Stack [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]     * ```     */    zip<U>(other: Collection<unknown, U>): Stack<[T, U]>;    zip<U, V>(      other: Collection<unknown, U>,      other2: Collection<unknown, V>    ): Stack<[T, U, V]>;    zip(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>;    /**     * Returns a Stack "zipped" with the provided collections.     *     * Unlike `zip`, `zipAll` continues zipping until the longest collection is     * exhausted. Missing values from shorter collections are filled with `undefined`.     *     * ```js     * const a = Stack([ 1, 2 ]);     * const b = Stack([ 3, 4, 5 ]);     * const c = a.zipAll(b); // Stack [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]     * ```     *     * Note: Since zipAll will return a collection as large as the largest     * input, some results may contain undefined values. TypeScript cannot     * account for these without cases (as of v2.5).     */    zipAll<U>(other: Collection<unknown, U>): Stack<[T, U]>;    zipAll<U, V>(      other: Collection<unknown, U>,      other2: Collection<unknown, V>    ): Stack<[T, U, V]>;    zipAll(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>;    /**     * Returns a Stack "zipped" with the provided collections by using a     * custom `zipper` function.     *     * ```js     * const a = Stack([ 1, 2, 3 ]);     * const b = Stack([ 4, 5, 6 ]);     * const c = a.zipWith((a, b) => a + b, b);     * // Stack [ 5, 7, 9 ]     * ```     */    zipWith<U, Z>(      zipper: (value: T, otherValue: U) => Z,      otherCollection: Collection<unknown, U>    ): Stack<Z>;    zipWith<U, V, Z>(      zipper: (value: T, otherValue: U, thirdValue: V) => Z,      otherCollection: Collection<unknown, U>,      thirdCollection: Collection<unknown, V>    ): Stack<Z>;    zipWith<Z>(      zipper: (...values: Array<unknown>) => Z,      ...collections: Array<Collection<unknown, unknown>>    ): Stack<Z>;  }  /**   * Returns a Seq.Indexed of numbers from `start` (inclusive) to `end`   * (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to   * infinity. When `start` is equal to `end`, returns empty range.   *   * Note: `Range` is a factory function and not a class, and does not use the   * `new` keyword during construction.   *   * ```js   * const { Range } = require('immutable')   * Range() // [ 0, 1, 2, 3, ... ]   * Range(10) // [ 10, 11, 12, 13, ... ]   * Range(10, 15) // [ 10, 11, 12, 13, 14 ]   * Range(10, 30, 5) // [ 10, 15, 20, 25 ]   * Range(30, 10, 5) // [ 30, 25, 20, 15 ]   * Range(30, 30, 5) // []   * ```   */  function Range(    start?: number,    end?: number,    step?: number  ): Seq.Indexed<number>;  /**   * Returns a Seq.Indexed of `value` repeated `times` times. When `times` is   * not defined, returns an infinite `Seq` of `value`.   *   * Note: `Repeat` is a factory function and not a class, and does not use the   * `new` keyword during construction.   *   * ```js   * const { Repeat } = require('immutable')   * Repeat('foo') // [ 'foo', 'foo', 'foo', ... ]   * Repeat('bar', 4) // [ 'bar', 'bar', 'bar', 'bar' ]   * ```   */  function Repeat<T>(value: T, times?: number): Seq.Indexed<T>;  /**   * A record is similar to a JS object, but enforces a specific set of allowed   * string keys, and has default values.   *   * The `Record()` function produces new Record Factories, which when called   * create Record instances.   *   * ```js   * const { Record } = require('immutable')   * const ABRecord = Record({ a: 1, b: 2 })   * const myRecord = ABRecord({ b: 3 })   * ```   *   * Records always have a value for the keys they define. `remove`ing a key   * from a record simply resets it to the default value for that key.   *   * ```js   * myRecord.get('a') // 1   * myRecord.get('b') // 3   * const myRecordWithoutB = myRecord.remove('b')   * myRecordWithoutB.get('b') // 2   * ```   *   * Values provided to the constructor not found in the Record type will   * be ignored. For example, in this case, ABRecord is provided a key "x" even   * though only "a" and "b" have been defined. The value for "x" will be   * ignored for this record.   *   * ```js   * const myRecord = ABRecord({ b: 3, x: 10 })   * myRecord.get('x') // undefined   * ```   *   * Because Records have a known set of string keys, property get access works   * as expected, however property sets will throw an Error.   *   * Note: IE8 does not support property access. Only use `get()` when   * supporting IE8.   *   * ```js   * myRecord.b // 3   * myRecord.b = 5 // throws Error   * ```   *   * Record Types can be extended as well, allowing for custom methods on your   * Record. This is not a common pattern in functional environments, but is in   * many JS programs.   *   * However Record Types are more restricted than typical JavaScript classes.   * They do not use a class constructor, which also means they cannot use   * class properties (since those are technically part of a constructor).   *   * While Record Types can be syntactically created with the JavaScript `class`   * form, the resulting Record function is actually a factory function, not a   * class constructor. Even though Record Types are not classes, JavaScript   * currently requires the use of `new` when creating new Record instances if   * they are defined as a `class`.   *   * ```   * class ABRecord extends Record({ a: 1, b: 2 }) {   *   getAB() {   *     return this.a + this.b;   *   }   * }   *   * var myRecord = new ABRecord({b: 3})   * myRecord.getAB() // 4   * ```   *   *   * **Flow Typing Records:**   *   * Immutable.js exports two Flow types designed to make it easier to use   * Records with flow typed code, `RecordOf<TProps>` and `RecordFactory<TProps>`.   *   * When defining a new kind of Record factory function, use a flow type that   * describes the values the record contains along with `RecordFactory<TProps>`.   * To type instances of the Record (which the factory function returns),   * use `RecordOf<TProps>`.   *   * Typically, new Record definitions will export both the Record factory   * function as well as the Record instance type for use in other code.   *   * ```js   * import type { RecordFactory, RecordOf } from 'immutable';   *   * // Use RecordFactory<TProps> for defining new Record factory functions.   * type Point3DProps = { x: number, y: number, z: number };   * const defaultValues: Point3DProps = { x: 0, y: 0, z: 0 };   * const makePoint3D: RecordFactory<Point3DProps> = Record(defaultValues);   * export makePoint3D;   *   * // Use RecordOf<T> for defining new instances of that Record.   * export type Point3D = RecordOf<Point3DProps>;   * const some3DPoint: Point3D = makePoint3D({ x: 10, y: 20, z: 30 });   * ```   *   * **Flow Typing Record Subclasses:**   *   * Records can be subclassed as a means to add additional methods to Record   * instances. This is generally discouraged in favor of a more functional API,   * since Subclasses have some minor overhead. However the ability to create   * a rich API on Record types can be quite valuable.   *   * When using Flow to type Subclasses, do not use `RecordFactory<TProps>`,   * instead apply the props type when subclassing:   *   * ```js   * type PersonProps = {name: string, age: number};   * const defaultValues: PersonProps = {name: 'Aristotle', age: 2400};   * const PersonRecord = Record(defaultValues);   * class Person extends PersonRecord<PersonProps> {   *   getName(): string {   *     return this.get('name')   *   }   *   *   setName(name: string): this {   *     return this.set('name', name);   *   }   * }   * ```   *   * **Choosing Records vs plain JavaScript objects**   *   * Records offer a persistently immutable alternative to plain JavaScript   * objects, however they're not required to be used within Immutable.js   * collections. In fact, the deep-access and deep-updating functions   * like `getIn()` and `setIn()` work with plain JavaScript Objects as well.   *   * Deciding to use Records or Objects in your application should be informed   * by the tradeoffs and relative benefits of each:   *   * - *Runtime immutability*: plain JS objects may be carefully treated as   *   immutable, however Record instances will *throw* if attempted to be   *   mutated directly. Records provide this additional guarantee, however at   *   some marginal runtime cost. While JS objects are mutable by nature, the   *   use of type-checking tools like [Flow](https://medium.com/@gcanti/immutability-with-flow-faa050a1aef4)   *   can help gain confidence in code written to favor immutability.   *   * - *Value equality*: Records use value equality when compared with `is()`   *   or `record.equals()`. That is, two Records with the same keys and values   *   are equal. Plain objects use *reference equality*. Two objects with the   *   same keys and values are not equal since they are different objects.   *   This is important to consider when using objects as keys in a `Map` or   *   values in a `Set`, which use equality when retrieving values.   *   * - *API methods*: Records have a full featured API, with methods like   *   `.getIn()`, and `.equals()`. These can make working with these values   *   easier, but comes at the cost of not allowing keys with those names.   *   * - *Default values*: Records provide default values for every key, which   *   can be useful when constructing Records with often unchanging values.   *   However default values can make using Flow and TypeScript more laborious.   *   * - *Serialization*: Records use a custom internal representation to   *   efficiently store and update their values. Converting to and from this   *   form isn't free. If converting Records to plain objects is common,   *   consider sticking with plain objects to begin with.   */  namespace Record {    /**     * True if `maybeRecord` is an instance of a Record.     */    function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>;    /**     * Records allow passing a second parameter to supply a descriptive name     * that appears when converting a Record to a string or in any error     * messages. A descriptive name for any record can be accessed by using this     * method. If one was not provided, the string "Record" is returned.     *     * ```js     * const { Record } = require('immutable')     * const Person = Record({     *   name: null     * }, 'Person')     *     * var me = Person({ name: 'My Name' })     * me.toString() // "Person { "name": "My Name" }"     * Record.getDescriptiveName(me) // "Person"     * ```     */    function getDescriptiveName(record: Record<any>): string;    /**     * A Record.Factory is created by the `Record()` function. Record instances     * are created by passing it some of the accepted values for that Record     * type:     *     * <!-- runkit:activate     *      { "preamble": "const { Record } = require('immutable')" }     * -->     * ```js     * // makePerson is a Record Factory function     * const makePerson = Record({ name: null, favoriteColor: 'unknown' });     *     * // alan is a Record instance     * const alan = makePerson({ name: 'Alan' });     * ```     *     * Note that Record Factories return `Record<TProps> & Readonly<TProps>`,     * this allows use of both the Record instance API, and direct property     * access on the resulting instances:     *     * <!-- runkit:activate     *      { "preamble": "const { Record } = require('immutable');const makePerson = Record({ name: null, favoriteColor: 'unknown' });const alan = makePerson({ name: 'Alan' });" }     * -->     * ```js     * // Use the Record API     * console.log('Record API: ' + alan.get('name'))     *     * // Or direct property access (Readonly)     * console.log('property access: ' + alan.name)     * ```     *     * **Flow Typing Records:**     *     * Use the `RecordFactory<TProps>` Flow type to get high quality type checking of     * Records:     *     * ```js     * import type { RecordFactory, RecordOf } from 'immutable';     *     * // Use RecordFactory<TProps> for defining new Record factory functions.     * type PersonProps = { name: ?string, favoriteColor: string };     * const makePerson: RecordFactory<PersonProps> = Record({ name: null, favoriteColor: 'unknown' });     *     * // Use RecordOf<T> for defining new instances of that Record.     * type Person = RecordOf<PersonProps>;     * const alan: Person = makePerson({ name: 'Alan' });     * ```     */    namespace Factory {}    interface Factory<TProps extends object> {      (values?: Partial<TProps> | Iterable<[string, unknown]>): Record<TProps> &        Readonly<TProps>;      new (        values?: Partial<TProps> | Iterable<[string, unknown]>      ): Record<TProps> & Readonly<TProps>;      /**       * The name provided to `Record(values, name)` can be accessed with       * `displayName`.       */      displayName: string;    }    function Factory<TProps extends object>(      values?: Partial<TProps> | Iterable<[string, unknown]>    ): Record<TProps> & Readonly<TProps>;  }  /**   * Unlike other types in Immutable.js, the `Record()` function creates a new   * Record Factory, which is a function that creates Record instances.   *   * See above for examples of using `Record()`.   *   * Note: `Record` is a factory function and not a class, and does not use the   * `new` keyword during construction.   */  function Record<TProps extends object>(    defaultValues: TProps,    name?: string  ): Record.Factory<TProps>;  interface Record<TProps extends object> {    // Reading values    has(key: string): key is keyof TProps & string;    /**     * Returns the value associated with the provided key, which may be the     * default value defined when creating the Record factory function.     *     * If the requested key is not defined by this Record type, then     * notSetValue will be returned if provided. Note that this scenario would     * produce an error when using Flow or TypeScript.     */    get<K extends keyof TProps>(key: K, notSetValue?: unknown): TProps[K];    get<T>(key: string, notSetValue: T): T;    // Reading deep values    hasIn(keyPath: Iterable<unknown>): boolean;    getIn(keyPath: Iterable<unknown>): unknown;    // Value equality    equals(other: unknown): boolean;    hashCode(): number;    // Persistent changes    set<K extends keyof TProps>(key: K, value: TProps[K]): this;    update<K extends keyof TProps>(      key: K,      updater: (value: TProps[K]) => TProps[K]    ): this;    merge(      ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>    ): this;    mergeDeep(      ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>    ): this;    mergeWith(      merger: (oldVal: unknown, newVal: unknown, key: keyof TProps) => unknown,      ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>    ): this;    mergeDeepWith(      merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,      ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>    ): this;    /**     * Returns a new instance of this Record type with the value for the     * specific key set to its default value.     *     * @alias remove     */    delete<K extends keyof TProps>(key: K): this;    remove<K extends keyof TProps>(key: K): this;    /**     * Returns a new instance of this Record type with all values set     * to their default values.     */    clear(): this;    // Deep persistent changes    setIn(keyPath: Iterable<unknown>, value: unknown): this;    updateIn(      keyPath: Iterable<unknown>,      updater: (value: unknown) => unknown    ): this;    mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;    mergeDeepIn(      keyPath: Iterable<unknown>,      ...collections: Array<unknown>    ): this;    /**     * @alias removeIn     */    deleteIn(keyPath: Iterable<unknown>): this;    removeIn(keyPath: Iterable<unknown>): this;    // Conversion to JavaScript types    /**     * Deeply converts this Record to equivalent native JavaScript Object.     *     * Note: This method may not be overridden. Objects with custom     * serialization to plain JS may override toJSON() instead.     */    toJS(): DeepCopy<TProps>;    /**     * Shallowly converts this Record to equivalent native JavaScript Object.     */    toJSON(): TProps;    /**     * Shallowly converts this Record to equivalent JavaScript Object.     */    toObject(): TProps;    // Transient changes    /**     * Note: Not all methods can be used on a mutable collection or within     * `withMutations`! Only `set` may be used mutatively.     *     * @see `Map#withMutations`     */    withMutations(mutator: (mutable: this) => unknown): this;    /**     * @see `Map#asMutable`     */    asMutable(): this;    /**     * @see `Map#wasAltered`     */    wasAltered(): boolean;    /**     * @see `Map#asImmutable`     */    asImmutable(): this;    // Sequence algorithms    toSeq(): Seq.Keyed<keyof TProps, TProps[keyof TProps]>;    [Symbol.iterator](): IterableIterator<[keyof TProps, TProps[keyof TProps]]>;  }  /**   * RecordOf<T> is used in TypeScript to define interfaces expecting an   * instance of record with type T.   *   * This is equivalent to an instance of a record created by a Record Factory.   */  type RecordOf<TProps extends object> = Record<TProps> & Readonly<TProps>;  /**   * `Seq` describes a lazy operation, allowing them to efficiently chain   * use of all the higher-order collection methods (such as `map` and `filter`)   * by not creating intermediate collections.   *   * **Seq is immutable** — Once a Seq is created, it cannot be   * changed, appended to, rearranged or otherwise modified. Instead, any   * mutative method called on a `Seq` will return a new `Seq`.   *   * **Seq is lazy** — `Seq` does as little work as necessary to respond to any   * method call. Values are often created during iteration, including implicit   * iteration when reducing or converting to a concrete data structure such as   * a `List` or JavaScript `Array`.   *   * For example, the following performs no work, because the resulting   * `Seq`'s values are never iterated:   *   * ```js   * const { Seq } = require('immutable')   * const oddSquares = Seq([ 1, 2, 3, 4, 5, 6, 7, 8 ])   *   .filter(x => x % 2 !== 0)   *   .map(x => x * x)   * ```   *   * Once the `Seq` is used, it performs only the work necessary. In this   * example, no intermediate arrays are ever created, filter is called three   * times, and map is only called once:   *   * ```js   * oddSquares.get(1); // 9   * ```   *   * Any collection can be converted to a lazy Seq with `Seq()`.   *   * <!-- runkit:activate -->   * ```js   * const { Map } = require('immutable')   * const map = Map({ a: 1, b: 2, c: 3 })   * const lazySeq = Seq(map)   * ```   *   * `Seq` allows for the efficient chaining of operations, allowing for the   * expression of logic that can otherwise be very tedious:   *   * ```js   * lazySeq   *   .flip()   *   .map(key => key.toUpperCase())   *   .flip()   * // Seq { A: 1, B: 1, C: 1 }   * ```   *   * As well as expressing logic that would otherwise seem memory or time   * limited, for example `Range` is a special kind of Lazy sequence.   *   * <!-- runkit:activate -->   * ```js   * const { Range } = require('immutable')   * Range(1, Infinity)   *   .skip(1000)   *   .map(n => -n)   *   .filter(n => n % 2 === 0)   *   .take(2)   *   .reduce((r, n) => r * n, 1)   * // 1006008   * ```   *   * Seq is often used to provide a rich collection API to JavaScript Object.   *   * ```js   * Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject();   * // { x: 0, y: 2, z: 4 }   * ```   */  namespace Seq {    /**     * True if `maybeSeq` is a Seq, it is not backed by a concrete     * structure such as Map, List, or Set.     */    function isSeq(      maybeSeq: unknown    ): maybeSeq is      | Seq.Indexed<unknown>      | Seq.Keyed<unknown, unknown>      | Seq.Set<unknown>;    /**     * `Seq` which represents key-value pairs.     */    namespace Keyed {}    /**     * Always returns a Seq.Keyed, if input is not keyed, expects an     * collection of [K, V] tuples.     *     * Note: `Seq.Keyed` is a conversion function and not a class, and does not     * use the `new` keyword during construction.     */    function Keyed<K, V>(collection?: Iterable<[K, V]>): Seq.Keyed<K, V>;    function Keyed<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>;    interface Keyed<K, V> extends Seq<K, V>, Collection.Keyed<K, V> {      /**       * Deeply converts this Keyed Seq to equivalent native JavaScript Object.       *       * Converts keys to Strings.       */      toJS(): { [key in string | number | symbol]: DeepCopy<V> };      /**       * Shallowly converts this Keyed Seq to equivalent native JavaScript Object.       *       * Converts keys to Strings.       */      toJSON(): { [key in string | number | symbol]: V };      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<[K, V]>;      /**       * Returns itself       */      toSeq(): this;      /**       * Returns a new Seq with other collections concatenated to this one.       *       * All entries will be present in the resulting Seq, even if they       * have the same key.       */      concat<KC, VC>(        ...collections: Array<Iterable<[KC, VC]>>      ): Seq.Keyed<K | KC, V | VC>;      concat<C>(        ...collections: Array<{ [key: string]: C }>      ): Seq.Keyed<K | string, V | C>;      /**       * Returns a new Seq.Keyed with values passed through a       * `mapper` function.       *       * ```js       * const { Seq } = require('immutable')       * Seq.Keyed({ a: 1, b: 2 }).map(x => 10 * x)       * // Seq { "a": 10, "b": 20 }       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: V, key: K, iter: this) => M,        context?: unknown      ): Seq.Keyed<K, M>;      /**       * @see Collection.Keyed.mapKeys       */      mapKeys<M>(        mapper: (key: K, value: V, iter: this) => M,        context?: unknown      ): Seq.Keyed<M, V>;      /**       * @see Collection.Keyed.mapEntries       */      mapEntries<KM, VM>(        mapper: (          entry: [K, V],          index: number,          iter: this        ) => [KM, VM] | undefined,        context?: unknown      ): Seq.Keyed<KM, VM>;      /**       * Flat-maps the Seq, returning a Seq of the same type.       *       * Similar to `seq.map(...).flatten(true)`.       */      flatMap<KM, VM>(        mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,        context?: unknown      ): Seq.Keyed<KM, VM>;      /**       * Returns a new Seq with only the entries for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends V>(        predicate: (value: V, key: K, iter: this) => value is F,        context?: unknown      ): Seq.Keyed<K, F>;      filter(        predicate: (value: V, key: K, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new keyed Seq with the values for which the `predicate`       * function returns false and another for which is returns true.       */      partition<F extends V, C>(        predicate: (this: C, value: V, key: K, iter: this) => value is F,        context?: C      ): [Seq.Keyed<K, V>, Seq.Keyed<K, F>];      partition<C>(        predicate: (this: C, value: V, key: K, iter: this) => unknown,        context?: C      ): [this, this];      /**       * @see Collection.Keyed.flip       */      flip(): Seq.Keyed<V, K>;      [Symbol.iterator](): IterableIterator<[K, V]>;    }    /**     * `Seq` which represents an ordered indexed list of values.     */    namespace Indexed {      /**       * Provides an Seq.Indexed of the values provided.       */      function of<T>(...values: Array<T>): Seq.Indexed<T>;    }    /**     * Always returns Seq.Indexed, discarding associated keys and     * supplying incrementing indices.     *     * Note: `Seq.Indexed` is a conversion function and not a class, and does     * not use the `new` keyword during construction.     */    function Indexed<T>(      collection?: Iterable<T> | ArrayLike<T>    ): Seq.Indexed<T>;    interface Indexed<T> extends Seq<number, T>, Collection.Indexed<T> {      /**       * Deeply converts this Indexed Seq to equivalent native JavaScript Array.       */      toJS(): Array<DeepCopy<T>>;      /**       * Shallowly converts this Indexed Seq to equivalent native JavaScript Array.       */      toJSON(): Array<T>;      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<T>;      /**       * Returns itself       */      toSeq(): this;      /**       * Returns a new Seq with other collections concatenated to this one.       */      concat<C>(        ...valuesOrCollections: Array<Iterable<C> | C>      ): Seq.Indexed<T | C>;      /**       * Returns a new Seq.Indexed with values passed through a       * `mapper` function.       *       * ```js       * const { Seq } = require('immutable')       * Seq.Indexed([ 1, 2 ]).map(x => 10 * x)       * // Seq [ 10, 20 ]       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: T, key: number, iter: this) => M,        context?: unknown      ): Seq.Indexed<M>;      /**       * Flat-maps the Seq, returning a a Seq of the same type.       *       * Similar to `seq.map(...).flatten(true)`.       */      flatMap<M>(        mapper: (value: T, key: number, iter: this) => Iterable<M>,        context?: unknown      ): Seq.Indexed<M>;      /**       * Returns a new Seq with only the values for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends T>(        predicate: (value: T, index: number, iter: this) => value is F,        context?: unknown      ): Seq.Indexed<F>;      filter(        predicate: (value: T, index: number, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new indexed Seq with the values for which the `predicate`       * function returns false and another for which is returns true.       */      partition<F extends T, C>(        predicate: (this: C, value: T, index: number, iter: this) => value is F,        context?: C      ): [Seq.Indexed<T>, Seq.Indexed<F>];      partition<C>(        predicate: (this: C, value: T, index: number, iter: this) => unknown,        context?: C      ): [this, this];      /**       * Returns a Seq "zipped" with the provided collections.       *       * Like `zipWith`, but using the default `zipper`: creating an `Array`.       *       * ```js       * const a = Seq([ 1, 2, 3 ]);       * const b = Seq([ 4, 5, 6 ]);       * const c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]       * ```       */      zip<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>;      zip<U, V>(        other: Collection<unknown, U>,        other2: Collection<unknown, V>      ): Seq.Indexed<[T, U, V]>;      zip(        ...collections: Array<Collection<unknown, unknown>>      ): Seq.Indexed<unknown>;      /**       * Returns a Seq "zipped" with the provided collections.       *       * Unlike `zip`, `zipAll` continues zipping until the longest collection is       * exhausted. Missing values from shorter collections are filled with `undefined`.       *       * ```js       * const a = Seq([ 1, 2 ]);       * const b = Seq([ 3, 4, 5 ]);       * const c = a.zipAll(b); // Seq [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]       * ```       */      zipAll<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>;      zipAll<U, V>(        other: Collection<unknown, U>,        other2: Collection<unknown, V>      ): Seq.Indexed<[T, U, V]>;      zipAll(        ...collections: Array<Collection<unknown, unknown>>      ): Seq.Indexed<unknown>;      /**       * Returns a Seq "zipped" with the provided collections by using a       * custom `zipper` function.       *       * ```js       * const a = Seq([ 1, 2, 3 ]);       * const b = Seq([ 4, 5, 6 ]);       * const c = a.zipWith((a, b) => a + b, b);       * // Seq [ 5, 7, 9 ]       * ```       */      zipWith<U, Z>(        zipper: (value: T, otherValue: U) => Z,        otherCollection: Collection<unknown, U>      ): Seq.Indexed<Z>;      zipWith<U, V, Z>(        zipper: (value: T, otherValue: U, thirdValue: V) => Z,        otherCollection: Collection<unknown, U>,        thirdCollection: Collection<unknown, V>      ): Seq.Indexed<Z>;      zipWith<Z>(        zipper: (...values: Array<unknown>) => Z,        ...collections: Array<Collection<unknown, unknown>>      ): Seq.Indexed<Z>;      [Symbol.iterator](): IterableIterator<T>;    }    /**     * `Seq` which represents a set of values.     *     * Because `Seq` are often lazy, `Seq.Set` does not provide the same guarantee     * of value uniqueness as the concrete `Set`.     */    namespace Set {      /**       * Returns a Seq.Set of the provided values       */      function of<T>(...values: Array<T>): Seq.Set<T>;    }    /**     * Always returns a Seq.Set, discarding associated indices or keys.     *     * Note: `Seq.Set` is a conversion function and not a class, and does not     * use the `new` keyword during construction.     */    function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Seq.Set<T>;    interface Set<T> extends Seq<T, T>, Collection.Set<T> {      /**       * Deeply converts this Set Seq to equivalent native JavaScript Array.       */      toJS(): Array<DeepCopy<T>>;      /**       * Shallowly converts this Set Seq to equivalent native JavaScript Array.       */      toJSON(): Array<T>;      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<T>;      /**       * Returns itself       */      toSeq(): this;      /**       * Returns a new Seq with other collections concatenated to this one.       *       * All entries will be present in the resulting Seq, even if they       * are duplicates.       */      concat<U>(...collections: Array<Iterable<U>>): Seq.Set<T | U>;      /**       * Returns a new Seq.Set with values passed through a       * `mapper` function.       *       * ```js       * Seq.Set([ 1, 2 ]).map(x => 10 * x)       * // Seq { 10, 20 }       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: T, key: T, iter: this) => M,        context?: unknown      ): Seq.Set<M>;      /**       * Flat-maps the Seq, returning a Seq of the same type.       *       * Similar to `seq.map(...).flatten(true)`.       */      flatMap<M>(        mapper: (value: T, key: T, iter: this) => Iterable<M>,        context?: unknown      ): Seq.Set<M>;      /**       * Returns a new Seq with only the values for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends T>(        predicate: (value: T, key: T, iter: this) => value is F,        context?: unknown      ): Seq.Set<F>;      filter(        predicate: (value: T, key: T, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new set Seq with the values for which the `predicate`       * function returns false and another for which is returns true.       */      partition<F extends T, C>(        predicate: (this: C, value: T, key: T, iter: this) => value is F,        context?: C      ): [Seq.Set<T>, Seq.Set<F>];      partition<C>(        predicate: (this: C, value: T, key: T, iter: this) => unknown,        context?: C      ): [this, this];      [Symbol.iterator](): IterableIterator<T>;    }  }  /**   * Creates a Seq.   *   * Returns a particular kind of `Seq` based on the input.   *   *   * If a `Seq`, that same `Seq`.   *   * If an `Collection`, a `Seq` of the same kind (Keyed, Indexed, or Set).   *   * If an Array-like, an `Seq.Indexed`.   *   * If an Iterable Object, an `Seq.Indexed`.   *   * If an Object, a `Seq.Keyed`.   *   * Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`,   * which is usually not what you want. You should turn your Iterator Object into   * an iterable object by defining a Symbol.iterator (or @@iterator) method which   * returns `this`.   *   * Note: `Seq` is a conversion function and not a class, and does not use the   * `new` keyword during construction.   */  function Seq<S extends Seq<unknown, unknown>>(seq: S): S;  function Seq<K, V>(collection: Collection.Keyed<K, V>): Seq.Keyed<K, V>;  function Seq<T>(collection: Collection.Set<T>): Seq.Set<T>;  function Seq<T>(    collection: Collection.Indexed<T> | Iterable<T> | ArrayLike<T>  ): Seq.Indexed<T>;  function Seq<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>;  function Seq<K = unknown, V = unknown>(): Seq<K, V>;  interface Seq<K, V> extends Collection<K, V> {    /**     * Some Seqs can describe their size lazily. When this is the case,     * size will be an integer. Otherwise it will be undefined.     *     * For example, Seqs returned from `map()` or `reverse()`     * preserve the size of the original `Seq` while `filter()` does not.     *     * Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will     * always have a size.     */    readonly size: number | undefined;    // Force evaluation    /**     * Because Sequences are lazy and designed to be chained together, they do     * not cache their results. For example, this map function is called a total     * of 6 times, as each `join` iterates the Seq of three values.     *     *     var squares = Seq([ 1, 2, 3 ]).map(x => x * x)     *     squares.join() + squares.join()     *     * If you know a `Seq` will be used multiple times, it may be more     * efficient to first cache it in memory. Here, the map function is called     * only 3 times.     *     *     var squares = Seq([ 1, 2, 3 ]).map(x => x * x).cacheResult()     *     squares.join() + squares.join()     *     * Use this method judiciously, as it must fully evaluate a Seq which can be     * a burden on memory and possibly performance.     *     * Note: after calling `cacheResult`, a Seq will always have a `size`.     */    cacheResult(): this;    // Sequence algorithms    /**     * Returns a new Seq with values passed through a     * `mapper` function.     *     * ```js     * const { Seq } = require('immutable')     * Seq([ 1, 2 ]).map(x => 10 * x)     * // Seq [ 10, 20 ]     * ```     *     * Note: `map()` always returns a new instance, even if it produced the same     * value at every step.     */    map<M>(      mapper: (value: V, key: K, iter: this) => M,      context?: unknown    ): Seq<K, M>;    /**     * Returns a new Seq with values passed through a     * `mapper` function.     *     * ```js     * const { Seq } = require('immutable')     * Seq([ 1, 2 ]).map(x => 10 * x)     * // Seq [ 10, 20 ]     * ```     *     * Note: `map()` always returns a new instance, even if it produced the same     * value at every step.     * Note: used only for sets.     */    map<M>(      mapper: (value: V, key: K, iter: this) => M,      context?: unknown    ): Seq<M, M>;    /**     * Flat-maps the Seq, returning a Seq of the same type.     *     * Similar to `seq.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: V, key: K, iter: this) => Iterable<M>,      context?: unknown    ): Seq<K, M>;    /**     * Flat-maps the Seq, returning a Seq of the same type.     *     * Similar to `seq.map(...).flatten(true)`.     * Note: Used only for sets.     */    flatMap<M>(      mapper: (value: V, key: K, iter: this) => Iterable<M>,      context?: unknown    ): Seq<M, M>;    /**     * Returns a new Seq with only the values for which the `predicate`     * function returns true.     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends V>(      predicate: (value: V, key: K, iter: this) => value is F,      context?: unknown    ): Seq<K, F>;    filter(      predicate: (value: V, key: K, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new Seq with the values for which the `predicate` function     * returns false and another for which is returns true.     */    partition<F extends V, C>(      predicate: (this: C, value: V, key: K, iter: this) => value is F,      context?: C    ): [Seq<K, V>, Seq<K, F>];    partition<C>(      predicate: (this: C, value: V, key: K, iter: this) => unknown,      context?: C    ): [this, this];  }  /**   * The `Collection` is a set of (key, value) entries which can be iterated, and   * is the base class for all collections in `immutable`, allowing them to   * make use of all the Collection methods (such as `map` and `filter`).   *   * Note: A collection is always iterated in the same order, however that order   * may not always be well defined, as is the case for the `Map` and `Set`.   *   * Collection is the abstract base class for concrete data structures. It   * cannot be constructed directly.   *   * Implementations should extend one of the subclasses, `Collection.Keyed`,   * `Collection.Indexed`, or `Collection.Set`.   */  namespace Collection {    /**     * @deprecated use `const { isKeyed } = require('immutable')`     */    function isKeyed(      maybeKeyed: unknown    ): maybeKeyed is Collection.Keyed<unknown, unknown>;    /**     * @deprecated use `const { isIndexed } = require('immutable')`     */    function isIndexed(      maybeIndexed: unknown    ): maybeIndexed is Collection.Indexed<unknown>;    /**     * @deprecated use `const { isAssociative } = require('immutable')`     */    function isAssociative(      maybeAssociative: unknown    ): maybeAssociative is      | Collection.Keyed<unknown, unknown>      | Collection.Indexed<unknown>;    /**     * @deprecated use `const { isOrdered } = require('immutable')`     */    function isOrdered(maybeOrdered: unknown): boolean;    /**     * Keyed Collections have discrete keys tied to each value.     *     * When iterating `Collection.Keyed`, each iteration will yield a `[K, V]`     * tuple, in other words, `Collection#entries` is the default iterator for     * Keyed Collections.     */    namespace Keyed {}    /**     * Creates a Collection.Keyed     *     * Similar to `Collection()`, however it expects collection-likes of [K, V]     * tuples if not constructed from a Collection.Keyed or JS Object.     *     * Note: `Collection.Keyed` is a conversion function and not a class, and     * does not use the `new` keyword during construction.     */    function Keyed<K, V>(collection?: Iterable<[K, V]>): Collection.Keyed<K, V>;    function Keyed<V>(obj: { [key: string]: V }): Collection.Keyed<string, V>;    interface Keyed<K, V> extends Collection<K, V> {      /**       * Deeply converts this Keyed collection to equivalent native JavaScript Object.       *       * Converts keys to Strings.       */      toJS(): { [key in string | number | symbol]: DeepCopy<V> };      /**       * Shallowly converts this Keyed collection to equivalent native JavaScript Object.       *       * Converts keys to Strings.       */      toJSON(): { [key in string | number | symbol]: V };      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<[K, V]>;      /**       * Returns Seq.Keyed.       * @override       */      toSeq(): Seq.Keyed<K, V>;      // Sequence functions      /**       * Returns a new Collection.Keyed of the same type where the keys and values       * have been flipped.       *       * <!-- runkit:activate -->       * ```js       * const { Map } = require('immutable')       * Map({ a: 'z', b: 'y' }).flip()       * // Map { "z": "a", "y": "b" }       * ```       */      flip(): Collection.Keyed<V, K>;      /**       * Returns a new Collection with other collections concatenated to this one.       */      concat<KC, VC>(        ...collections: Array<Iterable<[KC, VC]>>      ): Collection.Keyed<K | KC, V | VC>;      concat<C>(        ...collections: Array<{ [key: string]: C }>      ): Collection.Keyed<K | string, V | C>;      /**       * Returns a new Collection.Keyed with values passed through a       * `mapper` function.       *       * ```js       * const { Collection } = require('immutable')       * Collection.Keyed({ a: 1, b: 2 }).map(x => 10 * x)       * // Seq { "a": 10, "b": 20 }       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: V, key: K, iter: this) => M,        context?: unknown      ): Collection.Keyed<K, M>;      /**       * Returns a new Collection.Keyed of the same type with keys passed through       * a `mapper` function.       *       * <!-- runkit:activate -->       * ```js       * const { Map } = require('immutable')       * Map({ a: 1, b: 2 }).mapKeys(x => x.toUpperCase())       * // Map { "A": 1, "B": 2 }       * ```       *       * Note: `mapKeys()` always returns a new instance, even if it produced       * the same key at every step.       */      mapKeys<M>(        mapper: (key: K, value: V, iter: this) => M,        context?: unknown      ): Collection.Keyed<M, V>;      /**       * Returns a new Collection.Keyed of the same type with entries       * ([key, value] tuples) passed through a `mapper` function.       *       * <!-- runkit:activate -->       * ```js       * const { Map } = require('immutable')       * Map({ a: 1, b: 2 })       *   .mapEntries(([ k, v ]) => [ k.toUpperCase(), v * 2 ])       * // Map { "A": 2, "B": 4 }       * ```       *       * Note: `mapEntries()` always returns a new instance, even if it produced       * the same entry at every step.       *       * If the mapper function returns `undefined`, then the entry will be filtered       */      mapEntries<KM, VM>(        mapper: (          entry: [K, V],          index: number,          iter: this        ) => [KM, VM] | undefined,        context?: unknown      ): Collection.Keyed<KM, VM>;      /**       * Flat-maps the Collection, returning a Collection of the same type.       *       * Similar to `collection.map(...).flatten(true)`.       */      flatMap<KM, VM>(        mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,        context?: unknown      ): Collection.Keyed<KM, VM>;      /**       * Returns a new Collection with only the values for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends V>(        predicate: (value: V, key: K, iter: this) => value is F,        context?: unknown      ): Collection.Keyed<K, F>;      filter(        predicate: (value: V, key: K, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new keyed Collection with the values for which the       * `predicate` function returns false and another for which is returns       * true.       */      partition<F extends V, C>(        predicate: (this: C, value: V, key: K, iter: this) => value is F,        context?: C      ): [Collection.Keyed<K, V>, Collection.Keyed<K, F>];      partition<C>(        predicate: (this: C, value: V, key: K, iter: this) => unknown,        context?: C      ): [this, this];      [Symbol.iterator](): IterableIterator<[K, V]>;    }    /**     * Indexed Collections have incrementing numeric keys. They exhibit     * slightly different behavior than `Collection.Keyed` for some methods in order     * to better mirror the behavior of JavaScript's `Array`, and add methods     * which do not make sense on non-indexed Collections such as `indexOf`.     *     * Unlike JavaScript arrays, `Collection.Indexed`s are always dense. "Unset"     * indices and `undefined` indices are indistinguishable, and all indices from     * 0 to `size` are visited when iterated.     *     * All Collection.Indexed methods return re-indexed Collections. In other words,     * indices always start at 0 and increment until size. If you wish to     * preserve indices, using them as keys, convert to a Collection.Keyed by     * calling `toKeyedSeq`.     */    namespace Indexed {}    /**     * Creates a new Collection.Indexed.     *     * Note: `Collection.Indexed` is a conversion function and not a class, and     * does not use the `new` keyword during construction.     */    function Indexed<T>(      collection?: Iterable<T> | ArrayLike<T>    ): Collection.Indexed<T>;    interface Indexed<T> extends Collection<number, T> {      /**       * Deeply converts this Indexed collection to equivalent native JavaScript Array.       */      toJS(): Array<DeepCopy<T>>;      /**       * Shallowly converts this Indexed collection to equivalent native JavaScript Array.       */      toJSON(): Array<T>;      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<T>;      // Reading values      /**       * Returns the value associated with the provided index, or notSetValue if       * the index is beyond the bounds of the Collection.       *       * `index` may be a negative number, which indexes back from the end of the       * Collection. `s.get(-1)` gets the last item in the Collection.       */      get<NSV>(index: number, notSetValue: NSV): T | NSV;      get(index: number): T | undefined;      // Conversion to Seq      /**       * Returns Seq.Indexed.       * @override       */      toSeq(): Seq.Indexed<T>;      /**       * If this is a collection of [key, value] entry tuples, it will return a       * Seq.Keyed of those entries.       */      fromEntrySeq(): Seq.Keyed<unknown, unknown>;      // Combination      /**       * Returns a Collection of the same type with `separator` between each item       * in this Collection.       */      interpose(separator: T): this;      /**       * Returns a Collection of the same type with the provided `collections`       * interleaved into this collection.       *       * The resulting Collection includes the first item from each, then the       * second from each, etc.       *       * <!-- runkit:activate       *      { "preamble": "require('immutable')"}       * -->       * ```js       * const { List } = require('immutable')       * List([ 1, 2, 3 ]).interleave(List([ 'A', 'B', 'C' ]))       * // List [ 1, "A", 2, "B", 3, "C" ]       * ```       *       * The shortest Collection stops interleave.       *       * <!-- runkit:activate       *      { "preamble": "const { List } = require('immutable')" }       * -->       * ```js       * List([ 1, 2, 3 ]).interleave(       *   List([ 'A', 'B' ]),       *   List([ 'X', 'Y', 'Z' ])       * )       * // List [ 1, "A", "X", 2, "B", "Y" ]       * ```       *       * Since `interleave()` re-indexes values, it produces a complete copy,       * which has `O(N)` complexity.       *       * Note: `interleave` *cannot* be used in `withMutations`.       */      interleave(...collections: Array<Collection<unknown, T>>): this;      /**       * Splice returns a new indexed Collection by replacing a region of this       * Collection with new values. If values are not provided, it only skips the       * region to be removed.       *       * `index` may be a negative number, which indexes back from the end of the       * Collection. `s.splice(-2)` splices after the second to last item.       *       * <!-- runkit:activate -->       * ```js       * const { List } = require('immutable')       * List([ 'a', 'b', 'c', 'd' ]).splice(1, 2, 'q', 'r', 's')       * // List [ "a", "q", "r", "s", "d" ]       * ```       *       * Since `splice()` re-indexes values, it produces a complete copy, which       * has `O(N)` complexity.       *       * Note: `splice` *cannot* be used in `withMutations`.       */      splice(index: number, removeNum: number, ...values: Array<T>): this;      /**       * Returns a Collection of the same type "zipped" with the provided       * collections.       *       * Like `zipWith`, but using the default `zipper`: creating an `Array`.       *       *       * <!-- runkit:activate       *      { "preamble": "const { List } = require('immutable')" }       * -->       * ```js       * const a = List([ 1, 2, 3 ]);       * const b = List([ 4, 5, 6 ]);       * const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]       * ```       */      zip<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>;      zip<U, V>(        other: Collection<unknown, U>,        other2: Collection<unknown, V>      ): Collection.Indexed<[T, U, V]>;      zip(        ...collections: Array<Collection<unknown, unknown>>      ): Collection.Indexed<unknown>;      /**       * Returns a Collection "zipped" with the provided collections.       *       * Unlike `zip`, `zipAll` continues zipping until the longest collection is       * exhausted. Missing values from shorter collections are filled with `undefined`.       *       * ```js       * const a = List([ 1, 2 ]);       * const b = List([ 3, 4, 5 ]);       * const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]       * ```       */      zipAll<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>;      zipAll<U, V>(        other: Collection<unknown, U>,        other2: Collection<unknown, V>      ): Collection.Indexed<[T, U, V]>;      zipAll(        ...collections: Array<Collection<unknown, unknown>>      ): Collection.Indexed<unknown>;      /**       * Returns a Collection of the same type "zipped" with the provided       * collections by using a custom `zipper` function.       *       * <!-- runkit:activate       *      { "preamble": "const { List } = require('immutable')" }       * -->       * ```js       * const a = List([ 1, 2, 3 ]);       * const b = List([ 4, 5, 6 ]);       * const c = a.zipWith((a, b) => a + b, b);       * // List [ 5, 7, 9 ]       * ```       */      zipWith<U, Z>(        zipper: (value: T, otherValue: U) => Z,        otherCollection: Collection<unknown, U>      ): Collection.Indexed<Z>;      zipWith<U, V, Z>(        zipper: (value: T, otherValue: U, thirdValue: V) => Z,        otherCollection: Collection<unknown, U>,        thirdCollection: Collection<unknown, V>      ): Collection.Indexed<Z>;      zipWith<Z>(        zipper: (...values: Array<unknown>) => Z,        ...collections: Array<Collection<unknown, unknown>>      ): Collection.Indexed<Z>;      // Search for value      /**       * Returns the first index at which a given value can be found in the       * Collection, or -1 if it is not present.       */      indexOf(searchValue: T): number;      /**       * Returns the last index at which a given value can be found in the       * Collection, or -1 if it is not present.       */      lastIndexOf(searchValue: T): number;      /**       * Returns the first index in the Collection where a value satisfies the       * provided predicate function. Otherwise -1 is returned.       */      findIndex(        predicate: (value: T, index: number, iter: this) => boolean,        context?: unknown      ): number;      /**       * Returns the last index in the Collection where a value satisfies the       * provided predicate function. Otherwise -1 is returned.       */      findLastIndex(        predicate: (value: T, index: number, iter: this) => boolean,        context?: unknown      ): number;      // Sequence algorithms      /**       * Returns a new Collection with other collections concatenated to this one.       */      concat<C>(        ...valuesOrCollections: Array<Iterable<C> | C>      ): Collection.Indexed<T | C>;      /**       * Returns a new Collection.Indexed with values passed through a       * `mapper` function.       *       * ```js       * const { Collection } = require('immutable')       * Collection.Indexed([1,2]).map(x => 10 * x)       * // Seq [ 1, 2 ]       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: T, key: number, iter: this) => M,        context?: unknown      ): Collection.Indexed<M>;      /**       * Flat-maps the Collection, returning a Collection of the same type.       *       * Similar to `collection.map(...).flatten(true)`.       */      flatMap<M>(        mapper: (value: T, key: number, iter: this) => Iterable<M>,        context?: unknown      ): Collection.Indexed<M>;      /**       * Returns a new Collection with only the values for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends T>(        predicate: (value: T, index: number, iter: this) => value is F,        context?: unknown      ): Collection.Indexed<F>;      filter(        predicate: (value: T, index: number, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new indexed Collection with the values for which the       * `predicate` function returns false and another for which is returns       * true.       */      partition<F extends T, C>(        predicate: (this: C, value: T, index: number, iter: this) => value is F,        context?: C      ): [Collection.Indexed<T>, Collection.Indexed<F>];      partition<C>(        predicate: (this: C, value: T, index: number, iter: this) => unknown,        context?: C      ): [this, this];      [Symbol.iterator](): IterableIterator<T>;    }    /**     * Set Collections only represent values. They have no associated keys or     * indices. Duplicate values are possible in the lazy `Seq.Set`s, however     * the concrete `Set` Collection does not allow duplicate values.     *     * Collection methods on Collection.Set such as `map` and `forEach` will provide     * the value as both the first and second arguments to the provided function.     *     * ```js     * const { Collection } = require('immutable')     * const seq = Collection.Set([ 'A', 'B', 'C' ])     * // Seq { "A", "B", "C" }     * seq.forEach((v, k) =>     *  assert.equal(v, k)     * )     * ```     */    namespace Set {}    /**     * Similar to `Collection()`, but always returns a Collection.Set.     *     * Note: `Collection.Set` is a factory function and not a class, and does     * not use the `new` keyword during construction.     */    function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Collection.Set<T>;    interface Set<T> extends Collection<T, T> {      /**       * Deeply converts this Set collection to equivalent native JavaScript Array.       */      toJS(): Array<DeepCopy<T>>;      /**       * Shallowly converts this Set collection to equivalent native JavaScript Array.       */      toJSON(): Array<T>;      /**       * Shallowly converts this collection to an Array.       */      toArray(): Array<T>;      /**       * Returns Seq.Set.       * @override       */      toSeq(): Seq.Set<T>;      // Sequence algorithms      /**       * Returns a new Collection with other collections concatenated to this one.       */      concat<U>(...collections: Array<Iterable<U>>): Collection.Set<T | U>;      /**       * Returns a new Collection.Set with values passed through a       * `mapper` function.       *       * ```       * Collection.Set([ 1, 2 ]).map(x => 10 * x)       * // Seq { 1, 2 }       * ```       *       * Note: `map()` always returns a new instance, even if it produced the       * same value at every step.       */      map<M>(        mapper: (value: T, key: T, iter: this) => M,        context?: unknown      ): Collection.Set<M>;      /**       * Flat-maps the Collection, returning a Collection of the same type.       *       * Similar to `collection.map(...).flatten(true)`.       */      flatMap<M>(        mapper: (value: T, key: T, iter: this) => Iterable<M>,        context?: unknown      ): Collection.Set<M>;      /**       * Returns a new Collection with only the values for which the `predicate`       * function returns true.       *       * Note: `filter()` always returns a new instance, even if it results in       * not filtering out any values.       */      filter<F extends T>(        predicate: (value: T, key: T, iter: this) => value is F,        context?: unknown      ): Collection.Set<F>;      filter(        predicate: (value: T, key: T, iter: this) => unknown,        context?: unknown      ): this;      /**       * Returns a new set Collection with the values for which the       * `predicate` function returns false and another for which is returns       * true.       */      partition<F extends T, C>(        predicate: (this: C, value: T, key: T, iter: this) => value is F,        context?: C      ): [Collection.Set<T>, Collection.Set<F>];      partition<C>(        predicate: (this: C, value: T, key: T, iter: this) => unknown,        context?: C      ): [this, this];      [Symbol.iterator](): IterableIterator<T>;    }  }  /**   * Creates a Collection.   *   * The type of Collection created is based on the input.   *   *   * If an `Collection`, that same `Collection`.   *   * If an Array-like, an `Collection.Indexed`.   *   * If an Object with an Iterator defined, an `Collection.Indexed`.   *   * If an Object, an `Collection.Keyed`.   *   * This methods forces the conversion of Objects and Strings to Collections.   * If you want to ensure that a Collection of one item is returned, use   * `Seq.of`.   *   * Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`,   * which is usually not what you want. You should turn your Iterator Object into   * an iterable object by defining a Symbol.iterator (or @@iterator) method which   * returns `this`.   *   * Note: `Collection` is a conversion function and not a class, and does not   * use the `new` keyword during construction.   */  function Collection<I extends Collection<unknown, unknown>>(collection: I): I;  function Collection<T>(    collection: Iterable<T> | ArrayLike<T>  ): Collection.Indexed<T>;  function Collection<V>(obj: {    [key: string]: V;  }): Collection.Keyed<string, V>;  function Collection<K = unknown, V = unknown>(): Collection<K, V>;  interface Collection<K, V> extends ValueObject {    // Value equality    /**     * True if this and the other Collection have value equality, as defined     * by `Immutable.is()`.     *     * Note: This is equivalent to `Immutable.is(this, other)`, but provided to     * allow for chained expressions.     */    equals(other: unknown): boolean;    /**     * Computes and returns the hashed identity for this Collection.     *     * The `hashCode` of a Collection is used to determine potential equality,     * and is used when adding this to a `Set` or as a key in a `Map`, enabling     * lookup via a different instance.     *     * <!-- runkit:activate     *      { "preamble": "const { Set,  List } = require('immutable')" }     * -->     * ```js     * const a = List([ 1, 2, 3 ]);     * const b = List([ 1, 2, 3 ]);     * assert.notStrictEqual(a, b); // different instances     * const set = Set([ a ]);     * assert.equal(set.has(b), true);     * ```     *     * If two values have the same `hashCode`, they are [not guaranteed     * to be equal][Hash Collision]. If two values have different `hashCode`s,     * they must not be equal.     *     * [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science)     */    hashCode(): number;    // Reading values    /**     * Returns the value associated with the provided key, or notSetValue if     * the Collection does not contain this key.     *     * Note: it is possible a key may be associated with an `undefined` value,     * so if `notSetValue` is not provided and this method returns `undefined`,     * that does not guarantee the key was not found.     */    get<NSV>(key: K, notSetValue: NSV): V | NSV;    get(key: K): V | undefined;    /**     * True if a key exists within this `Collection`, using `Immutable.is`     * to determine equality     */    has(key: K): boolean;    /**     * True if a value exists within this `Collection`, using `Immutable.is`     * to determine equality     * @alias contains     */    includes(value: V): boolean;    contains(value: V): boolean;    /**     * In case the `Collection` is not empty returns the first element of the     * `Collection`.     * In case the `Collection` is empty returns the optional default     * value if provided, if no default value is provided returns undefined.     */    first<NSV = undefined>(notSetValue?: NSV): V | NSV;    /**     * In case the `Collection` is not empty returns the last element of the     * `Collection`.     * In case the `Collection` is empty returns the optional default     * value if provided, if no default value is provided returns undefined.     */    last<NSV = undefined>(notSetValue?: NSV): V | NSV;    // Reading deep values    /**     * Returns the value found by following a path of keys or indices through     * nested Collections.     *     * <!-- runkit:activate -->     * ```js     * const { Map, List } = require('immutable')     * const deepData = Map({ x: List([ Map({ y: 123 }) ]) });     * deepData.getIn(['x', 0, 'y']) // 123     * ```     *     * Plain JavaScript Object or Arrays may be nested within an Immutable.js     * Collection, and getIn() can access those values as well:     *     * <!-- runkit:activate -->     * ```js     * const { Map, List } = require('immutable')     * const deepData = Map({ x: [ { y: 123 } ] });     * deepData.getIn(['x', 0, 'y']) // 123     * ```     */    getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown;    /**     * True if the result of following a path of keys or indices through nested     * Collections results in a set value.     */    hasIn(searchKeyPath: Iterable<unknown>): boolean;    // Persistent changes    /**     * This can be very useful as a way to "chain" a normal function into a     * sequence of methods. RxJS calls this "let" and lodash calls it "thru".     *     * For example, to sum a Seq after mapping and filtering:     *     * <!-- runkit:activate -->     * ```js     * const { Seq } = require('immutable')     *     * function sum(collection) {     *   return collection.reduce((sum, x) => sum + x, 0)     * }     *     * Seq([ 1, 2, 3 ])     *   .map(x => x + 1)     *   .filter(x => x % 2 === 0)     *   .update(sum)     * // 6     * ```     */    update<R>(updater: (value: this) => R): R;    // Conversion to JavaScript types    /**     * Deeply converts this Collection to equivalent native JavaScript Array or Object.     *     * `Collection.Indexed`, and `Collection.Set` become `Array`, while     * `Collection.Keyed` become `Object`, converting keys to Strings.     */    toJS():      | Array<DeepCopy<V>>      | { [key in string | number | symbol]: DeepCopy<V> };    /**     * Shallowly converts this Collection to equivalent native JavaScript Array or Object.     *     * `Collection.Indexed`, and `Collection.Set` become `Array`, while     * `Collection.Keyed` become `Object`, converting keys to Strings.     */    toJSON(): Array<V> | { [key in string | number | symbol]: V };    /**     * Shallowly converts this collection to an Array.     *     * `Collection.Indexed`, and `Collection.Set` produce an Array of values.     * `Collection.Keyed` produce an Array of [key, value] tuples.     */    toArray(): Array<V> | Array<[K, V]>;    /**     * Shallowly converts this Collection to an Object.     *     * Converts keys to Strings.     */    toObject(): { [key: string]: V };    // Conversion to Collections    /**     * Converts this Collection to a Map, Throws if keys are not hashable.     *     * Note: This is equivalent to `Map(this.toKeyedSeq())`, but provided     * for convenience and to allow for chained expressions.     */    toMap(): Map<K, V>;    /**     * Converts this Collection to a Map, maintaining the order of iteration.     *     * Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`, but     * provided for convenience and to allow for chained expressions.     */    toOrderedMap(): OrderedMap<K, V>;    /**     * Converts this Collection to a Set, discarding keys. Throws if values     * are not hashable.     *     * Note: This is equivalent to `Set(this)`, but provided to allow for     * chained expressions.     */    toSet(): Set<V>;    /**     * Converts this Collection to a Set, maintaining the order of iteration and     * discarding keys.     *     * Note: This is equivalent to `OrderedSet(this.valueSeq())`, but provided     * for convenience and to allow for chained expressions.     */    toOrderedSet(): OrderedSet<V>;    /**     * Converts this Collection to a List, discarding keys.     *     * This is similar to `List(collection)`, but provided to allow for chained     * expressions. However, when called on `Map` or other keyed collections,     * `collection.toList()` discards the keys and creates a list of only the     * values, whereas `List(collection)` creates a list of entry tuples.     *     * <!-- runkit:activate -->     * ```js     * const { Map, List } = require('immutable')     * var myMap = Map({ a: 'Apple', b: 'Banana' })     * List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ]     * myMap.toList() // List [ "Apple", "Banana" ]     * ```     */    toList(): List<V>;    /**     * Converts this Collection to a Stack, discarding keys. Throws if values     * are not hashable.     *     * Note: This is equivalent to `Stack(this)`, but provided to allow for     * chained expressions.     */    toStack(): Stack<V>;    // Conversion to Seq    /**     * Converts this Collection to a Seq of the same kind (indexed,     * keyed, or set).     */    toSeq(): Seq<K, V>;    /**     * Returns a Seq.Keyed from this Collection where indices are treated as keys.     *     * This is useful if you want to operate on an     * Collection.Indexed and preserve the [index, value] pairs.     *     * The returned Seq will have identical iteration order as     * this Collection.     *     * <!-- runkit:activate -->     * ```js     * const { Seq } = require('immutable')     * const indexedSeq = Seq([ 'A', 'B', 'C' ])     * // Seq [ "A", "B", "C" ]     * indexedSeq.filter(v => v === 'B')     * // Seq [ "B" ]     * const keyedSeq = indexedSeq.toKeyedSeq()     * // Seq { 0: "A", 1: "B", 2: "C" }     * keyedSeq.filter(v => v === 'B')     * // Seq { 1: "B" }     * ```     */    toKeyedSeq(): Seq.Keyed<K, V>;    /**     * Returns an Seq.Indexed of the values of this Collection, discarding keys.     */    toIndexedSeq(): Seq.Indexed<V>;    /**     * Returns a Seq.Set of the values of this Collection, discarding keys.     */    toSetSeq(): Seq.Set<V>;    // Iterators    /**     * An iterator of this `Collection`'s keys.     *     * Note: this will return an ES6 iterator which does not support     * Immutable.js sequence algorithms. Use `keySeq` instead, if this is     * what you want.     */    keys(): IterableIterator<K>;    /**     * An iterator of this `Collection`'s values.     *     * Note: this will return an ES6 iterator which does not support     * Immutable.js sequence algorithms. Use `valueSeq` instead, if this is     * what you want.     */    values(): IterableIterator<V>;    /**     * An iterator of this `Collection`'s entries as `[ key, value ]` tuples.     *     * Note: this will return an ES6 iterator which does not support     * Immutable.js sequence algorithms. Use `entrySeq` instead, if this is     * what you want.     */    entries(): IterableIterator<[K, V]>;    [Symbol.iterator](): IterableIterator<unknown>;    // Collections (Seq)    /**     * Returns a new Seq.Indexed of the keys of this Collection,     * discarding values.     */    keySeq(): Seq.Indexed<K>;    /**     * Returns an Seq.Indexed of the values of this Collection, discarding keys.     */    valueSeq(): Seq.Indexed<V>;    /**     * Returns a new Seq.Indexed of [key, value] tuples.     */    entrySeq(): Seq.Indexed<[K, V]>;    // Sequence algorithms    /**     * Returns a new Collection of the same type with values passed through a     * `mapper` function.     *     * <!-- runkit:activate -->     * ```js     * const { Collection } = require('immutable')     * Collection({ a: 1, b: 2 }).map(x => 10 * x)     * // Seq { "a": 10, "b": 20 }     * ```     *     * Note: `map()` always returns a new instance, even if it produced the same     * value at every step.     */    map<M>(      mapper: (value: V, key: K, iter: this) => M,      context?: unknown    ): Collection<K, M>;    /**     * Note: used only for sets, which return Collection<M, M> but are otherwise     * identical to normal `map()`.     *     * @ignore     */    map(...args: Array<never>): unknown;    /**     * Returns a new Collection of the same type with only the entries for which     * the `predicate` function returns true.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map({ a: 1, b: 2, c: 3, d: 4}).filter(x => x % 2 === 0)     * // Map { "b": 2, "d": 4 }     * ```     *     * Note: `filter()` always returns a new instance, even if it results in     * not filtering out any values.     */    filter<F extends V>(      predicate: (value: V, key: K, iter: this) => value is F,      context?: unknown    ): Collection<K, F>;    filter(      predicate: (value: V, key: K, iter: this) => unknown,      context?: unknown    ): this;    /**     * Returns a new Collection of the same type with only the entries for which     * the `predicate` function returns false.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0)     * // Map { "a": 1, "c": 3 }     * ```     *     * Note: `filterNot()` always returns a new instance, even if it results in     * not filtering out any values.     */    filterNot(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): this;    /**     * Returns a new Collection with the values for which the `predicate`     * function returns false and another for which is returns true.     */    partition<F extends V, C>(      predicate: (this: C, value: V, key: K, iter: this) => value is F,      context?: C    ): [Collection<K, V>, Collection<K, F>];    partition<C>(      predicate: (this: C, value: V, key: K, iter: this) => unknown,      context?: C    ): [this, this];    /**     * Returns a new Collection of the same type in reverse order.     */    reverse(): this;    /**     * Returns a new Collection of the same type which includes the same entries,     * stably sorted by using a `comparator`.     *     * If a `comparator` is not provided, a default comparator uses `<` and `>`.     *     * `comparator(valueA, valueB)`:     *     *   * Returns `0` if the elements should not be swapped.     *   * Returns `-1` (or any negative number) if `valueA` comes before `valueB`     *   * Returns `1` (or any positive number) if `valueA` comes after `valueB`     *   * Is pure, i.e. it must always return the same value for the same pair     *     of values.     *     * When sorting collections which have no defined order, their ordered     * equivalents will be returned. e.g. `map.sort()` returns OrderedMap.     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => {     *   if (a < b) { return -1; }     *   if (a > b) { return 1; }     *   if (a === b) { return 0; }     * });     * // OrderedMap { "a": 1, "b": 2, "c": 3 }     * ```     *     * Note: `sort()` Always returns a new instance, even if the original was     * already sorted.     *     * Note: This is always an eager operation.     */    sort(comparator?: (valueA: V, valueB: V) => number): this;    /**     * Like `sort`, but also accepts a `comparatorValueMapper` which allows for     * sorting by more sophisticated means:     *     * <!-- runkit:activate -->     * ```js     * const { Map } = require('immutable')     * const beattles = Map({     *   John: { name: "Lennon" },     *   Paul: { name: "McCartney" },     *   George: { name: "Harrison" },     *   Ringo: { name: "Starr" },     * });     * beattles.sortBy(member => member.name);     * ```     *     * Note: `sortBy()` Always returns a new instance, even if the original was     * already sorted.     *     * Note: This is always an eager operation.     */    sortBy<C>(      comparatorValueMapper: (value: V, key: K, iter: this) => C,      comparator?: (valueA: C, valueB: C) => number    ): this;    /**     * Returns a `Collection.Keyed` of `Collection.Keyeds`, grouped by the return     * value of the `grouper` function.     *     * Note: This is always an eager operation.     *     * <!-- runkit:activate -->     * ```js     * const { List, Map } = require('immutable')     * const listOfMaps = List([     *   Map({ v: 0 }),     *   Map({ v: 1 }),     *   Map({ v: 1 }),     *   Map({ v: 0 }),     *   Map({ v: 2 })     * ])     * const groupsOfMaps = listOfMaps.groupBy(x => x.get('v'))     * // Map {     * //   0: List [ Map{ "v": 0 }, Map { "v": 0 } ],     * //   1: List [ Map{ "v": 1 }, Map { "v": 1 } ],     * //   2: List [ Map{ "v": 2 } ],     * // }     * ```     */    groupBy<G>(      grouper: (value: V, key: K, iter: this) => G,      context?: unknown    ): /*Map*/ Seq.Keyed<G, /*this*/ Collection<K, V>>;    // Side effects    /**     * The `sideEffect` is executed for every entry in the Collection.     *     * Unlike `Array#forEach`, if any call of `sideEffect` returns     * `false`, the iteration will stop. Returns the number of entries iterated     * (including the last iteration which returned false).     */    forEach(      sideEffect: (value: V, key: K, iter: this) => unknown,      context?: unknown    ): number;    // Creating subsets    /**     * Returns a new Collection of the same type representing a portion of this     * Collection from start up to but not including end.     *     * If begin is negative, it is offset from the end of the Collection. e.g.     * `slice(-2)` returns a Collection of the last two entries. If it is not     * provided the new Collection will begin at the beginning of this Collection.     *     * If end is negative, it is offset from the end of the Collection. e.g.     * `slice(0, -1)` returns a Collection of everything but the last entry. If     * it is not provided, the new Collection will continue through the end of     * this Collection.     *     * If the requested slice is equivalent to the current Collection, then it     * will return itself.     */    slice(begin?: number, end?: number): this;    /**     * Returns a new Collection of the same type containing all entries except     * the first.     */    rest(): this;    /**     * Returns a new Collection of the same type containing all entries except     * the last.     */    butLast(): this;    /**     * Returns a new Collection of the same type which excludes the first `amount`     * entries from this Collection.     */    skip(amount: number): this;    /**     * Returns a new Collection of the same type which excludes the last `amount`     * entries from this Collection.     */    skipLast(amount: number): this;    /**     * Returns a new Collection of the same type which includes entries starting     * from when `predicate` first returns false.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])     *   .skipWhile(x => x.match(/g/))     * // List [ "cat", "hat", "god" ]     * ```     */    skipWhile(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): this;    /**     * Returns a new Collection of the same type which includes entries starting     * from when `predicate` first returns true.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])     *   .skipUntil(x => x.match(/hat/))     * // List [ "hat", "god" ]     * ```     */    skipUntil(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): this;    /**     * Returns a new Collection of the same type which includes the first `amount`     * entries from this Collection.     */    take(amount: number): this;    /**     * Returns a new Collection of the same type which includes the last `amount`     * entries from this Collection.     */    takeLast(amount: number): this;    /**     * Returns a new Collection of the same type which includes entries from this     * Collection as long as the `predicate` returns true.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])     *   .takeWhile(x => x.match(/o/))     * // List [ "dog", "frog" ]     * ```     */    takeWhile(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): this;    /**     * Returns a new Collection of the same type which includes entries from this     * Collection as long as the `predicate` returns false.     *     * <!-- runkit:activate -->     * ```js     * const { List } = require('immutable')     * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])     *   .takeUntil(x => x.match(/at/))     * // List [ "dog", "frog" ]     * ```     */    takeUntil(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): this;    // Combination    /**     * Returns a new Collection of the same type with other values and     * collection-like concatenated to this one.     *     * For Seqs, all entries will be present in the resulting Seq, even if they     * have the same key.     */    concat(      ...valuesOrCollections: Array<unknown>    ): Collection<unknown, unknown>;    /**     * Flattens nested Collections.     *     * Will deeply flatten the Collection by default, returning a Collection of the     * same type, but a `depth` can be provided in the form of a number or     * boolean (where true means to shallowly flatten one level). A depth of 0     * (or shallow: false) will deeply flatten.     *     * Flattens only others Collection, not Arrays or Objects.     *     * Note: `flatten(true)` operates on Collection<unknown, Collection<K, V>> and     * returns Collection<K, V>     */    flatten(depth?: number): Collection<unknown, unknown>;    // tslint:disable-next-line unified-signatures    flatten(shallow?: boolean): Collection<unknown, unknown>;    /**     * Flat-maps the Collection, returning a Collection of the same type.     *     * Similar to `collection.map(...).flatten(true)`.     */    flatMap<M>(      mapper: (value: V, key: K, iter: this) => Iterable<M>,      context?: unknown    ): Collection<K, M>;    /**     * Flat-maps the Collection, returning a Collection of the same type.     *     * Similar to `collection.map(...).flatten(true)`.     * Used for Dictionaries only.     */    flatMap<KM, VM>(      mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,      context?: unknown    ): Collection<KM, VM>;    // Reducing a value    /**     * Reduces the Collection to a value by calling the `reducer` for every entry     * in the Collection and passing along the reduced value.     *     * If `initialReduction` is not provided, the first item in the     * Collection will be used.     *     * @see `Array#reduce`.     */    reduce<R>(      reducer: (reduction: R, value: V, key: K, iter: this) => R,      initialReduction: R,      context?: unknown    ): R;    reduce<R>(      reducer: (reduction: V | R, value: V, key: K, iter: this) => R    ): R;    /**     * Reduces the Collection in reverse (from the right side).     *     * Note: Similar to this.reverse().reduce(), and provided for parity     * with `Array#reduceRight`.     */    reduceRight<R>(      reducer: (reduction: R, value: V, key: K, iter: this) => R,      initialReduction: R,      context?: unknown    ): R;    reduceRight<R>(      reducer: (reduction: V | R, value: V, key: K, iter: this) => R    ): R;    /**     * True if `predicate` returns true for all entries in the Collection.     */    every(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): boolean;    /**     * True if `predicate` returns true for any entry in the Collection.     */    some(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): boolean;    /**     * Joins values together as a string, inserting a separator between each.     * The default separator is `","`.     */    join(separator?: string): string;    /**     * Returns true if this Collection includes no values.     *     * For some lazy `Seq`, `isEmpty` might need to iterate to determine     * emptiness. At most one iteration will occur.     */    isEmpty(): boolean;    /**     * Returns the size of this Collection.     *     * Regardless of if this Collection can describe its size lazily (some Seqs     * cannot), this method will always return the correct size. E.g. it     * evaluates a lazy `Seq` if necessary.     *     * If `predicate` is provided, then this returns the count of entries in the     * Collection for which the `predicate` returns true.     */    count(): number;    count(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): number;    /**     * Returns a `Seq.Keyed` of counts, grouped by the return value of     * the `grouper` function.     *     * Note: This is not a lazy operation.     */    countBy<G>(      grouper: (value: V, key: K, iter: this) => G,      context?: unknown    ): Map<G, number>;    // Search for value    /**     * Returns the first value for which the `predicate` returns true.     */    find(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown,      notSetValue?: V    ): V | undefined;    /**     * Returns the last value for which the `predicate` returns true.     *     * Note: `predicate` will be called for each entry in reverse.     */    findLast(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown,      notSetValue?: V    ): V | undefined;    /**     * Returns the first [key, value] entry for which the `predicate` returns true.     */    findEntry(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown,      notSetValue?: V    ): [K, V] | undefined;    /**     * Returns the last [key, value] entry for which the `predicate`     * returns true.     *     * Note: `predicate` will be called for each entry in reverse.     */    findLastEntry(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown,      notSetValue?: V    ): [K, V] | undefined;    /**     * Returns the key for which the `predicate` returns true.     */    findKey(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): K | undefined;    /**     * Returns the last key for which the `predicate` returns true.     *     * Note: `predicate` will be called for each entry in reverse.     */    findLastKey(      predicate: (value: V, key: K, iter: this) => boolean,      context?: unknown    ): K | undefined;    /**     * Returns the key associated with the search value, or undefined.     */    keyOf(searchValue: V): K | undefined;    /**     * Returns the last key associated with the search value, or undefined.     */    lastKeyOf(searchValue: V): K | undefined;    /**     * Returns the maximum value in this collection. If any values are     * comparatively equivalent, the first one found will be returned.     *     * The `comparator` is used in the same way as `Collection#sort`. If it is not     * provided, the default comparator is `>`.     *     * When two values are considered equivalent, the first encountered will be     * returned. Otherwise, `max` will operate independent of the order of input     * as long as the comparator is commutative. The default comparator `>` is     * commutative *only* when types do not differ.     *     * If `comparator` returns 0 and either value is NaN, undefined, or null,     * that value will be returned.     */    max(comparator?: (valueA: V, valueB: V) => number): V | undefined;    /**     * Like `max`, but also accepts a `comparatorValueMapper` which allows for     * comparing by more sophisticated means:     *     * <!-- runkit:activate -->     * ```js     * const { List, } = require('immutable');     * const l = List([     *   { name: 'Bob', avgHit: 1 },     *   { name: 'Max', avgHit: 3 },     *   { name: 'Lili', avgHit: 2 } ,     * ]);     * l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 }     * ```     */    maxBy<C>(      comparatorValueMapper: (value: V, key: K, iter: this) => C,      comparator?: (valueA: C, valueB: C) => number    ): V | undefined;    /**     * Returns the minimum value in this collection. If any values are     * comparatively equivalent, the first one found will be returned.     *     * The `comparator` is used in the same way as `Collection#sort`. If it is not     * provided, the default comparator is `<`.     *     * When two values are considered equivalent, the first encountered will be     * returned. Otherwise, `min` will operate independent of the order of input     * as long as the comparator is commutative. The default comparator `<` is     * commutative *only* when types do not differ.     *     * If `comparator` returns 0 and either value is NaN, undefined, or null,     * that value will be returned.     */    min(comparator?: (valueA: V, valueB: V) => number): V | undefined;    /**     * Like `min`, but also accepts a `comparatorValueMapper` which allows for     * comparing by more sophisticated means:     *     * <!-- runkit:activate -->     * ```js     * const { List, } = require('immutable');     * const l = List([     *   { name: 'Bob', avgHit: 1 },     *   { name: 'Max', avgHit: 3 },     *   { name: 'Lili', avgHit: 2 } ,     * ]);     * l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 }     * ```     */    minBy<C>(      comparatorValueMapper: (value: V, key: K, iter: this) => C,      comparator?: (valueA: C, valueB: C) => number    ): V | undefined;    // Comparison    /**     * True if `iter` includes every value in this Collection.     */    isSubset(iter: Iterable<V>): boolean;    /**     * True if this Collection includes every value in `iter`.     */    isSuperset(iter: Iterable<V>): boolean;  }  /**   * The interface to fulfill to qualify as a Value Object.   */  interface ValueObject {    /**     * True if this and the other Collection have value equality, as defined     * by `Immutable.is()`.     *     * Note: This is equivalent to `Immutable.is(this, other)`, but provided to     * allow for chained expressions.     */    equals(other: unknown): boolean;    /**     * Computes and returns the hashed identity for this Collection.     *     * The `hashCode` of a Collection is used to determine potential equality,     * and is used when adding this to a `Set` or as a key in a `Map`, enabling     * lookup via a different instance.     *     * <!-- runkit:activate -->     * ```js     * const { List, Set } = require('immutable');     * const a = List([ 1, 2, 3 ]);     * const b = List([ 1, 2, 3 ]);     * assert.notStrictEqual(a, b); // different instances     * const set = Set([ a ]);     * assert.equal(set.has(b), true);     * ```     *     * Note: hashCode() MUST return a Uint32 number. The easiest way to     * guarantee this is to return `myHash | 0` from a custom implementation.     *     * If two values have the same `hashCode`, they are [not guaranteed     * to be equal][Hash Collision]. If two values have different `hashCode`s,     * they must not be equal.     *     * Note: `hashCode()` is not guaranteed to always be called before     * `equals()`. Most but not all Immutable.js collections use hash codes to     * organize their internal data structures, while all Immutable.js     * collections use equality during lookups.     *     * [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science)     */    hashCode(): number;  }  /**   * Deeply converts plain JS objects and arrays to Immutable Maps and Lists.   *   * `fromJS` will convert Arrays and [array-like objects][2] to a List, and   * plain objects (without a custom prototype) to a Map. [Iterable objects][3]   * may be converted to List, Map, or Set.   *   * If a `reviver` is optionally provided, it will be called with every   * collection as a Seq (beginning with the most nested collections   * and proceeding to the top-level collection itself), along with the key   * referring to each collection and the parent JS object provided as `this`.   * For the top level, object, the key will be `""`. This `reviver` is expected   * to return a new Immutable Collection, allowing for custom conversions from   * deep JS objects. Finally, a `path` is provided which is the sequence of   * keys to this value from the starting value.   *   * `reviver` acts similarly to the [same parameter in `JSON.parse`][1].   *   * If `reviver` is not provided, the default behavior will convert Objects   * into Maps and Arrays into Lists like so:   *   * <!-- runkit:activate -->   * ```js   * const { fromJS, isKeyed } = require('immutable')   * function (key, value) {   *   return isKeyed(value) ? value.toMap() : value.toList()   * }   * ```   *   * Accordingly, this example converts native JS data to OrderedMap and List:   *   * <!-- runkit:activate -->   * ```js   * const { fromJS, isKeyed } = require('immutable')   * fromJS({ a: {b: [10, 20, 30]}, c: 40}, function (key, value, path) {   *   console.log(key, value, path)   *   return isKeyed(value) ? value.toOrderedMap() : value.toList()   * })   *   * > "b", [ 10, 20, 30 ], [ "a", "b" ]   * > "a", {b: [10, 20, 30]}, [ "a" ]   * > "", {a: {b: [10, 20, 30]}, c: 40}, []   * ```   *   * Keep in mind, when using JS objects to construct Immutable Maps, that   * JavaScript Object properties are always strings, even if written in a   * quote-less shorthand, while Immutable Maps accept keys of any type.   *   * <!-- runkit:activate -->   * ```js   * const { Map } = require('immutable')   * let obj = { 1: "one" };   * Object.keys(obj); // [ "1" ]   * assert.equal(obj["1"], obj[1]); // "one" === "one"   *   * let map = Map(obj);   * assert.notEqual(map.get("1"), map.get(1)); // "one" !== undefined   * ```   *   * Property access for JavaScript Objects first converts the key to a string,   * but since Immutable Map keys can be of any type the argument to `get()` is   * not altered.   *   * [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter   *      "Using the reviver parameter"   * [2]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Indexed_collections#working_with_array-like_objects   *      "Working with array-like objects"   * [3]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol   *      "The iterable protocol"   */  function fromJS(    jsValue: unknown,    reviver?: (      key: string | number,      sequence: Collection.Keyed<string, unknown> | Collection.Indexed<unknown>,      path?: Array<string | number>    ) => unknown  ): Collection<unknown, unknown>;  /**   * Value equality check with semantics similar to `Object.is`, but treats   * Immutable `Collection`s as values, equal if the second `Collection` includes   * equivalent values.   *   * It's used throughout Immutable when checking for equality, including `Map`   * key equality and `Set` membership.   *   * <!-- runkit:activate -->   * ```js   * const { Map, is } = require('immutable')   * const map1 = Map({ a: 1, b: 1, c: 1 })   * const map2 = Map({ a: 1, b: 1, c: 1 })   * assert.equal(map1 !== map2, true)   * assert.equal(Object.is(map1, map2), false)   * assert.equal(is(map1, map2), true)   * ```   *   * `is()` compares primitive types like strings and numbers, Immutable.js   * collections like `Map` and `List`, but also any custom object which   * implements `ValueObject` by providing `equals()` and `hashCode()` methods.   *   * Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same   * value, matching the behavior of ES6 Map key equality.   */  function is(first: unknown, second: unknown): boolean;  /**   * The `hash()` function is an important part of how Immutable determines if   * two values are equivalent and is used to determine how to store those   * values. Provided with any value, `hash()` will return a 31-bit integer.   *   * When designing Objects which may be equal, it's important that when a   * `.equals()` method returns true, that both values `.hashCode()` method   * return the same value. `hash()` may be used to produce those values.   *   * For non-Immutable Objects that do not provide a `.hashCode()` functions   * (including plain Objects, plain Arrays, Date objects, etc), a unique hash   * value will be created for each *instance*. That is, the create hash   * represents referential equality, and not value equality for Objects. This   * ensures that if that Object is mutated over time that its hash code will   * remain consistent, allowing Objects to be used as keys and values in   * Immutable.js collections.   *   * Note that `hash()` attempts to balance between speed and avoiding   * collisions, however it makes no attempt to produce secure hashes.   *   * *New in Version 4.0*   */  function hash(value: unknown): number;  /**   * True if `maybeImmutable` is an Immutable Collection or Record.   *   * Note: Still returns true even if the collections is within a `withMutations()`.   *   * <!-- runkit:activate -->   * ```js   * const { isImmutable, Map, List, Stack } = require('immutable');   * isImmutable([]); // false   * isImmutable({}); // false   * isImmutable(Map()); // true   * isImmutable(List()); // true   * isImmutable(Stack()); // true   * isImmutable(Map().asMutable()); // true   * ```   */  function isImmutable(    maybeImmutable: unknown  ): maybeImmutable is Collection<unknown, unknown>;  /**   * True if `maybeCollection` is a Collection, or any of its subclasses.   *   * <!-- runkit:activate -->   * ```js   * const { isCollection, Map, List, Stack } = require('immutable');   * isCollection([]); // false   * isCollection({}); // false   * isCollection(Map()); // true   * isCollection(List()); // true   * isCollection(Stack()); // true   * ```   */  function isCollection(    maybeCollection: unknown  ): maybeCollection is Collection<unknown, unknown>;  /**   * True if `maybeKeyed` is a Collection.Keyed, or any of its subclasses.   *   * <!-- runkit:activate -->   * ```js   * const { isKeyed, Map, List, Stack } = require('immutable');   * isKeyed([]); // false   * isKeyed({}); // false   * isKeyed(Map()); // true   * isKeyed(List()); // false   * isKeyed(Stack()); // false   * ```   */  function isKeyed(    maybeKeyed: unknown  ): maybeKeyed is Collection.Keyed<unknown, unknown>;  /**   * True if `maybeIndexed` is a Collection.Indexed, or any of its subclasses.   *   * <!-- runkit:activate -->   * ```js   * const { isIndexed, Map, List, Stack, Set } = require('immutable');   * isIndexed([]); // false   * isIndexed({}); // false   * isIndexed(Map()); // false   * isIndexed(List()); // true   * isIndexed(Stack()); // true   * isIndexed(Set()); // false   * ```   */  function isIndexed(    maybeIndexed: unknown  ): maybeIndexed is Collection.Indexed<unknown>;  /**   * True if `maybeAssociative` is either a Keyed or Indexed Collection.   *   * <!-- runkit:activate -->   * ```js   * const { isAssociative, Map, List, Stack, Set } = require('immutable');   * isAssociative([]); // false   * isAssociative({}); // false   * isAssociative(Map()); // true   * isAssociative(List()); // true   * isAssociative(Stack()); // true   * isAssociative(Set()); // false   * ```   */  function isAssociative(    maybeAssociative: unknown  ): maybeAssociative is    | Collection.Keyed<unknown, unknown>    | Collection.Indexed<unknown>;  /**   * True if `maybeOrdered` is a Collection where iteration order is well   * defined. True for Collection.Indexed as well as OrderedMap and OrderedSet.   *   * <!-- runkit:activate -->   * ```js   * const { isOrdered, Map, OrderedMap, List, Set } = require('immutable');   * isOrdered([]); // false   * isOrdered({}); // false   * isOrdered(Map()); // false   * isOrdered(OrderedMap()); // true   * isOrdered(List()); // true   * isOrdered(Set()); // false   * ```   */  function isOrdered(maybeOrdered: unknown): boolean;  /**   * True if `maybeValue` is a JavaScript Object which has *both* `equals()`   * and `hashCode()` methods.   *   * Any two instances of *value objects* can be compared for value equality with   * `Immutable.is()` and can be used as keys in a `Map` or members in a `Set`.   */  function isValueObject(maybeValue: unknown): maybeValue is ValueObject;  /**   * True if `maybeSeq` is a Seq.   */  function isSeq(    maybeSeq: unknown  ): maybeSeq is    | Seq.Indexed<unknown>    | Seq.Keyed<unknown, unknown>    | Seq.Set<unknown>;  /**   * True if `maybeList` is a List.   */  function isList(maybeList: unknown): maybeList is List<unknown>;  /**   * True if `maybeMap` is a Map.   *   * Also true for OrderedMaps.   */  function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>;  /**   * True if `maybeOrderedMap` is an OrderedMap.   */  function isOrderedMap(    maybeOrderedMap: unknown  ): maybeOrderedMap is OrderedMap<unknown, unknown>;  /**   * True if `maybeStack` is a Stack.   */  function isStack(maybeStack: unknown): maybeStack is Stack<unknown>;  /**   * True if `maybeSet` is a Set.   *   * Also true for OrderedSets.   */  function isSet(maybeSet: unknown): maybeSet is Set<unknown>;  /**   * True if `maybeOrderedSet` is an OrderedSet.   */  function isOrderedSet(    maybeOrderedSet: unknown  ): maybeOrderedSet is OrderedSet<unknown>;  /**   * True if `maybeRecord` is a Record.   */  function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>;  /**   * Returns the value within the provided collection associated with the   * provided key, or notSetValue if the key is not defined in the collection.   *   * A functional alternative to `collection.get(key)` which will also work on   * plain Objects and Arrays as an alternative for `collection[key]`.   *   * <!-- runkit:activate -->   * ```js   * const { get } = require('immutable')   * get([ 'dog', 'frog', 'cat' ], 2) // 'frog'   * get({ x: 123, y: 456 }, 'x') // 123   * get({ x: 123, y: 456 }, 'z', 'ifNotSet') // 'ifNotSet'   * ```   */  function get<K, V>(collection: Collection<K, V>, key: K): V | undefined;  function get<K, V, NSV>(    collection: Collection<K, V>,    key: K,    notSetValue: NSV  ): V | NSV;  function get<TProps extends object, K extends keyof TProps>(    record: Record<TProps>,    key: K,    notSetValue: unknown  ): TProps[K];  function get<V>(collection: Array<V>, key: number): V | undefined;  function get<V, NSV>(    collection: Array<V>,    key: number,    notSetValue: NSV  ): V | NSV;  function get<C extends object, K extends keyof C>(    object: C,    key: K,    notSetValue: unknown  ): C[K];  function get<V>(collection: { [key: string]: V }, key: string): V | undefined;  function get<V, NSV>(    collection: { [key: string]: V },    key: string,    notSetValue: NSV  ): V | NSV;  /**   * Returns true if the key is defined in the provided collection.   *   * A functional alternative to `collection.has(key)` which will also work with   * plain Objects and Arrays as an alternative for   * `collection.hasOwnProperty(key)`.   *   * <!-- runkit:activate -->   * ```js   * const { has } = require('immutable')   * has([ 'dog', 'frog', 'cat' ], 2) // true   * has([ 'dog', 'frog', 'cat' ], 5) // false   * has({ x: 123, y: 456 }, 'x') // true   * has({ x: 123, y: 456 }, 'z') // false   * ```   */  function has(collection: object, key: unknown): boolean;  /**   * Returns a copy of the collection with the value at key removed.   *   * A functional alternative to `collection.remove(key)` which will also work   * with plain Objects and Arrays as an alternative for   * `delete collectionCopy[key]`.   *   * <!-- runkit:activate -->   * ```js   * const { remove } = require('immutable')   * const originalArray = [ 'dog', 'frog', 'cat' ]   * remove(originalArray, 1) // [ 'dog', 'cat' ]   * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]   * const originalObject = { x: 123, y: 456 }   * remove(originalObject, 'x') // { y: 456 }   * console.log(originalObject) // { x: 123, y: 456 }   * ```   */  function remove<K, C extends Collection<K, unknown>>(    collection: C,    key: K  ): C;  function remove<    TProps extends object,    C extends Record<TProps>,    K extends keyof TProps  >(collection: C, key: K): C;  function remove<C extends Array<unknown>>(collection: C, key: number): C;  function remove<C, K extends keyof C>(collection: C, key: K): C;  function remove<C extends { [key: string]: unknown }, K extends keyof C>(    collection: C,    key: K  ): C;  /**   * Returns a copy of the collection with the value at key set to the provided   * value.   *   * A functional alternative to `collection.set(key, value)` which will also   * work with plain Objects and Arrays as an alternative for   * `collectionCopy[key] = value`.   *   * <!-- runkit:activate -->   * ```js   * const { set } = require('immutable')   * const originalArray = [ 'dog', 'frog', 'cat' ]   * set(originalArray, 1, 'cow') // [ 'dog', 'cow', 'cat' ]   * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]   * const originalObject = { x: 123, y: 456 }   * set(originalObject, 'x', 789) // { x: 789, y: 456 }   * console.log(originalObject) // { x: 123, y: 456 }   * ```   */  function set<K, V, C extends Collection<K, V>>(    collection: C,    key: K,    value: V  ): C;  function set<    TProps extends object,    C extends Record<TProps>,    K extends keyof TProps  >(record: C, key: K, value: TProps[K]): C;  function set<V, C extends Array<V>>(collection: C, key: number, value: V): C;  function set<C, K extends keyof C>(object: C, key: K, value: C[K]): C;  function set<V, C extends { [key: string]: V }>(    collection: C,    key: string,    value: V  ): C;  /**   * Returns a copy of the collection with the value at key set to the result of   * providing the existing value to the updating function.   *   * A functional alternative to `collection.update(key, fn)` which will also   * work with plain Objects and Arrays as an alternative for   * `collectionCopy[key] = fn(collection[key])`.   *   * <!-- runkit:activate -->   * ```js   * const { update } = require('immutable')   * const originalArray = [ 'dog', 'frog', 'cat' ]   * update(originalArray, 1, val => val.toUpperCase()) // [ 'dog', 'FROG', 'cat' ]   * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]   * const originalObject = { x: 123, y: 456 }   * update(originalObject, 'x', val => val * 6) // { x: 738, y: 456 }   * console.log(originalObject) // { x: 123, y: 456 }   * ```   */  function update<K, V, C extends Collection<K, V>>(    collection: C,    key: K,    updater: (value: V | undefined) => V  ): C;  function update<K, V, C extends Collection<K, V>, NSV>(    collection: C,    key: K,    notSetValue: NSV,    updater: (value: V | NSV) => V  ): C;  function update<    TProps extends object,    C extends Record<TProps>,    K extends keyof TProps  >(record: C, key: K, updater: (value: TProps[K]) => TProps[K]): C;  function update<    TProps extends object,    C extends Record<TProps>,    K extends keyof TProps,    NSV  >(    record: C,    key: K,    notSetValue: NSV,    updater: (value: TProps[K] | NSV) => TProps[K]  ): C;  function update<V>(    collection: Array<V>,    key: number,    updater: (value: V) => V  ): Array<V>;  function update<V, NSV>(    collection: Array<V>,    key: number,    notSetValue: NSV,    updater: (value: V | NSV) => V  ): Array<V>;  function update<C, K extends keyof C>(    object: C,    key: K,    updater: (value: C[K]) => C[K]  ): C;  function update<C, K extends keyof C, NSV>(    object: C,    key: K,    notSetValue: NSV,    updater: (value: C[K] | NSV) => C[K]  ): C;  function update<V, C extends { [key: string]: V }, K extends keyof C>(    collection: C,    key: K,    updater: (value: V) => V  ): { [key: string]: V };  function update<V, C extends { [key: string]: V }, K extends keyof C, NSV>(    collection: C,    key: K,    notSetValue: NSV,    updater: (value: V | NSV) => V  ): { [key: string]: V };  /**   * Returns the value at the provided key path starting at the provided   * collection, or notSetValue if the key path is not defined.   *   * A functional alternative to `collection.getIn(keypath)` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { getIn } = require('immutable')   * getIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // 123   * getIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p'], 'ifNotSet') // 'ifNotSet'   * ```   */  function getIn(    collection: unknown,    keyPath: Iterable<unknown>,    notSetValue?: unknown  ): unknown;  /**   * Returns true if the key path is defined in the provided collection.   *   * A functional alternative to `collection.hasIn(keypath)` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { hasIn } = require('immutable')   * hasIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // true   * hasIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p']) // false   * ```   */  function hasIn(collection: unknown, keyPath: Iterable<unknown>): boolean;  /**   * Returns a copy of the collection with the value at the key path removed.   *   * A functional alternative to `collection.removeIn(keypath)` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { removeIn } = require('immutable')   * const original = { x: { y: { z: 123 }}}   * removeIn(original, ['x', 'y', 'z']) // { x: { y: {}}}   * console.log(original) // { x: { y: { z: 123 }}}   * ```   */  function removeIn<C>(collection: C, keyPath: Iterable<unknown>): C;  /**   * Returns a copy of the collection with the value at the key path set to the   * provided value.   *   * A functional alternative to `collection.setIn(keypath)` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { setIn } = require('immutable')   * const original = { x: { y: { z: 123 }}}   * setIn(original, ['x', 'y', 'z'], 456) // { x: { y: { z: 456 }}}   * console.log(original) // { x: { y: { z: 123 }}}   * ```   */  function setIn<C>(    collection: C,    keyPath: Iterable<unknown>,    value: unknown  ): C;  /**   * Returns a copy of the collection with the value at key path set to the   * result of providing the existing value to the updating function.   *   * A functional alternative to `collection.updateIn(keypath)` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { updateIn } = require('immutable')   * const original = { x: { y: { z: 123 }}}   * updateIn(original, ['x', 'y', 'z'], val => val * 6) // { x: { y: { z: 738 }}}   * console.log(original) // { x: { y: { z: 123 }}}   * ```   */  function updateIn<C>(    collection: C,    keyPath: Iterable<unknown>,    updater: (value: unknown) => unknown  ): C;  function updateIn<C>(    collection: C,    keyPath: Iterable<unknown>,    notSetValue: unknown,    updater: (value: unknown) => unknown  ): C;  /**   * Returns a copy of the collection with the remaining collections merged in.   *   * A functional alternative to `collection.merge()` which will also work with   * plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { merge } = require('immutable')   * const original = { x: 123, y: 456 }   * merge(original, { y: 789, z: 'abc' }) // { x: 123, y: 789, z: 'abc' }   * console.log(original) // { x: 123, y: 456 }   * ```   */  function merge<C>(    collection: C,    ...collections: Array<      | Iterable<unknown>      | Iterable<[unknown, unknown]>      | { [key: string]: unknown }    >  ): C;  /**   * Returns a copy of the collection with the remaining collections merged in,   * calling the `merger` function whenever an existing value is encountered.   *   * A functional alternative to `collection.mergeWith()` which will also work   * with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { mergeWith } = require('immutable')   * const original = { x: 123, y: 456 }   * mergeWith(   *   (oldVal, newVal) => oldVal + newVal,   *   original,   *   { y: 789, z: 'abc' }   * ) // { x: 123, y: 1245, z: 'abc' }   * console.log(original) // { x: 123, y: 456 }   * ```   */  function mergeWith<C>(    merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,    collection: C,    ...collections: Array<      | Iterable<unknown>      | Iterable<[unknown, unknown]>      | { [key: string]: unknown }    >  ): C;  /**   * Like `merge()`, but when two compatible collections are encountered with   * the same key, it merges them as well, recursing deeply through the nested   * data. Two collections are considered to be compatible (and thus will be   * merged together) if they both fall into one of three categories: keyed   * (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and   * arrays), or set-like (e.g., `Set`s). If they fall into separate   * categories, `mergeDeep` will replace the existing collection with the   * collection being merged in. This behavior can be customized by using   * `mergeDeepWith()`.   *   * Note: Indexed and set-like collections are merged using   * `concat()`/`union()` and therefore do not recurse.   *   * A functional alternative to `collection.mergeDeep()` which will also work   * with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { mergeDeep } = require('immutable')   * const original = { x: { y: 123 }}   * mergeDeep(original, { x: { z: 456 }}) // { x: { y: 123, z: 456 }}   * console.log(original) // { x: { y: 123 }}   * ```   */  function mergeDeep<C>(    collection: C,    ...collections: Array<      | Iterable<unknown>      | Iterable<[unknown, unknown]>      | { [key: string]: unknown }    >  ): C;  /**   * Like `mergeDeep()`, but when two non-collections or incompatible   * collections are encountered at the same key, it uses the `merger` function   * to determine the resulting value. Collections are considered incompatible   * if they fall into separate categories between keyed, indexed, and set-like.   *   * A functional alternative to `collection.mergeDeepWith()` which will also   * work with plain Objects and Arrays.   *   * <!-- runkit:activate -->   * ```js   * const { mergeDeepWith } = require('immutable')   * const original = { x: { y: 123 }}   * mergeDeepWith(   *   (oldVal, newVal) => oldVal + newVal,   *   original,   *   { x: { y: 456 }}   * ) // { x: { y: 579 }}   * console.log(original) // { x: { y: 123 }}   * ```   */  function mergeDeepWith<C>(    merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,    collection: C,    ...collections: Array<      | Iterable<unknown>      | Iterable<[unknown, unknown]>      | { [key: string]: unknown }    >  ): C;}/** * Defines the main export of the immutable module to be the Immutable namespace * This supports many common module import patterns: * *     const Immutable = require("immutable"); *     const { List } = require("immutable"); *     import Immutable from "immutable"; *     import * as Immutable from "immutable"; *     import { List } from "immutable"; * */export = Immutable;/** * A global "Immutable" namespace used by UMD modules which allows the use of * the full Immutable API. * * If using Immutable as an imported module, prefer using: * *     import Immutable from 'immutable' * */export as namespace Immutable;
 |