chunk-5W6F4NR5.js 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. import {
  2. e as e2
  3. } from "./chunk-YZUP3MAF.js";
  4. import {
  5. e
  6. } from "./chunk-SCXOTZ6Q.js";
  7. import {
  8. D,
  9. E,
  10. P,
  11. Y,
  12. _,
  13. a as a2,
  14. j,
  15. l,
  16. q2 as q,
  17. r2,
  18. s2 as s,
  19. v2 as v,
  20. x2 as x,
  21. y,
  22. z
  23. } from "./chunk-XNLG7T2T.js";
  24. import {
  25. a,
  26. n,
  27. r,
  28. t2 as t
  29. } from "./chunk-IR4PV7VK.js";
  30. // node_modules/@arcgis/core/chunks/quat.js
  31. function b(t2) {
  32. return t2[0] = 0, t2[1] = 0, t2[2] = 0, t2[3] = 1, t2;
  33. }
  34. function v2(t2, s2, a3) {
  35. a3 *= 0.5;
  36. const n2 = Math.sin(a3);
  37. return t2[0] = n2 * s2[0], t2[1] = n2 * s2[1], t2[2] = n2 * s2[2], t2[3] = Math.cos(a3), t2;
  38. }
  39. function x2(t2, s2) {
  40. const a3 = 2 * Math.acos(s2[3]), n2 = Math.sin(a3 / 2);
  41. return n2 > t ? (t2[0] = s2[0] / n2, t2[1] = s2[1] / n2, t2[2] = s2[2] / n2) : (t2[0] = 1, t2[1] = 0, t2[2] = 0), a3;
  42. }
  43. function y2(t2, s2, a3) {
  44. const n2 = s2[0], o = s2[1], r3 = s2[2], e3 = s2[3], c = a3[0], u = a3[1], i = a3[2], h = a3[3];
  45. return t2[0] = n2 * h + e3 * c + o * i - r3 * u, t2[1] = o * h + e3 * u + r3 * c - n2 * i, t2[2] = r3 * h + e3 * i + n2 * u - o * c, t2[3] = e3 * h - n2 * c - o * u - r3 * i, t2;
  46. }
  47. function A(t2, s2, a3) {
  48. a3 *= 0.5;
  49. const n2 = s2[0], o = s2[1], r3 = s2[2], e3 = s2[3], c = Math.sin(a3), u = Math.cos(a3);
  50. return t2[0] = n2 * u + e3 * c, t2[1] = o * u + r3 * c, t2[2] = r3 * u - o * c, t2[3] = e3 * u - n2 * c, t2;
  51. }
  52. function I(t2, s2, a3) {
  53. a3 *= 0.5;
  54. const n2 = s2[0], o = s2[1], r3 = s2[2], e3 = s2[3], c = Math.sin(a3), u = Math.cos(a3);
  55. return t2[0] = n2 * u - r3 * c, t2[1] = o * u + e3 * c, t2[2] = r3 * u + n2 * c, t2[3] = e3 * u - o * c, t2;
  56. }
  57. function E2(t2, s2, a3) {
  58. a3 *= 0.5;
  59. const n2 = s2[0], o = s2[1], r3 = s2[2], e3 = s2[3], c = Math.sin(a3), u = Math.cos(a3);
  60. return t2[0] = n2 * u + o * c, t2[1] = o * u - n2 * c, t2[2] = r3 * u + e3 * c, t2[3] = e3 * u - r3 * c, t2;
  61. }
  62. function _2(t2, s2) {
  63. const a3 = s2[0], n2 = s2[1], o = s2[2];
  64. return t2[0] = a3, t2[1] = n2, t2[2] = o, t2[3] = Math.sqrt(Math.abs(1 - a3 * a3 - n2 * n2 - o * o)), t2;
  65. }
  66. function z2(t2, s2, a3, n2) {
  67. const r3 = s2[0], e3 = s2[1], c = s2[2], u = s2[3];
  68. let i, h, M, f, l2, m = a3[0], p = a3[1], q2 = a3[2], d = a3[3];
  69. return h = r3 * m + e3 * p + c * q2 + u * d, h < 0 && (h = -h, m = -m, p = -p, q2 = -q2, d = -d), 1 - h > t ? (i = Math.acos(h), M = Math.sin(i), f = Math.sin((1 - n2) * i) / M, l2 = Math.sin(n2 * i) / M) : (f = 1 - n2, l2 = n2), t2[0] = f * r3 + l2 * m, t2[1] = f * e3 + l2 * p, t2[2] = f * c + l2 * q2, t2[3] = f * u + l2 * d, t2;
  70. }
  71. function L(t2) {
  72. const s2 = a(), a3 = a(), n2 = a(), o = Math.sqrt(1 - s2), e3 = Math.sqrt(s2);
  73. return t2[0] = o * Math.sin(2 * Math.PI * a3), t2[1] = o * Math.cos(2 * Math.PI * a3), t2[2] = e3 * Math.sin(2 * Math.PI * n2), t2[3] = e3 * Math.cos(2 * Math.PI * n2), t2;
  74. }
  75. function O(t2, s2) {
  76. const a3 = s2[0], n2 = s2[1], o = s2[2], r3 = s2[3], e3 = a3 * a3 + n2 * n2 + o * o + r3 * r3, c = e3 ? 1 / e3 : 0;
  77. return t2[0] = -a3 * c, t2[1] = -n2 * c, t2[2] = -o * c, t2[3] = r3 * c, t2;
  78. }
  79. function S(t2, s2) {
  80. return t2[0] = -s2[0], t2[1] = -s2[1], t2[2] = -s2[2], t2[3] = s2[3], t2;
  81. }
  82. function T(t2, s2) {
  83. const a3 = s2[0] + s2[4] + s2[8];
  84. let n2;
  85. if (a3 > 0)
  86. n2 = Math.sqrt(a3 + 1), t2[3] = 0.5 * n2, n2 = 0.5 / n2, t2[0] = (s2[5] - s2[7]) * n2, t2[1] = (s2[6] - s2[2]) * n2, t2[2] = (s2[1] - s2[3]) * n2;
  87. else {
  88. let a4 = 0;
  89. s2[4] > s2[0] && (a4 = 1), s2[8] > s2[3 * a4 + a4] && (a4 = 2);
  90. const o = (a4 + 1) % 3, r3 = (a4 + 2) % 3;
  91. n2 = Math.sqrt(s2[3 * a4 + a4] - s2[3 * o + o] - s2[3 * r3 + r3] + 1), t2[a4] = 0.5 * n2, n2 = 0.5 / n2, t2[3] = (s2[3 * o + r3] - s2[3 * r3 + o]) * n2, t2[o] = (s2[3 * o + a4] + s2[3 * a4 + o]) * n2, t2[r3] = (s2[3 * r3 + a4] + s2[3 * a4 + r3]) * n2;
  92. }
  93. return t2;
  94. }
  95. function k(t2, s2, a3, n2) {
  96. const o = 0.5 * Math.PI / 180;
  97. s2 *= o, a3 *= o, n2 *= o;
  98. const r3 = Math.sin(s2), e3 = Math.cos(s2), c = Math.sin(a3), u = Math.cos(a3), i = Math.sin(n2), h = Math.cos(n2);
  99. return t2[0] = r3 * u * h - e3 * c * i, t2[1] = e3 * c * h + r3 * u * i, t2[2] = e3 * u * i - r3 * c * h, t2[3] = e3 * u * h + r3 * c * i, t2;
  100. }
  101. function w(t2) {
  102. return "quat(" + t2[0] + ", " + t2[1] + ", " + t2[2] + ", " + t2[3] + ")";
  103. }
  104. var B = a2;
  105. var C = r2;
  106. var D2 = s;
  107. var F = y2;
  108. var G = l;
  109. var R = y;
  110. var W = j;
  111. var X = x;
  112. var Y2 = X;
  113. var Z = q;
  114. var H = Z;
  115. var J = v;
  116. var K = D;
  117. var N = E;
  118. function Q(t2, s2, a3) {
  119. const n2 = P(s2, a3);
  120. return n2 < -0.999999 ? (_(U, V, s2), Y(U) < 1e-6 && _(U, $, s2), z(U, U), v2(t2, U, Math.PI), t2) : n2 > 0.999999 ? (t2[0] = 0, t2[1] = 0, t2[2] = 0, t2[3] = 1, t2) : (_(U, s2, a3), t2[0] = U[0], t2[1] = U[1], t2[2] = U[2], t2[3] = 1 + n2, J(t2, t2));
  121. }
  122. var U = n();
  123. var V = r(1, 0, 0);
  124. var $ = r(0, 1, 0);
  125. function tt(t2, s2, a3, n2, o, r3) {
  126. return z2(st, s2, o, r3), z2(at, a3, n2, r3), z2(t2, st, at, 2 * r3 * (1 - r3)), t2;
  127. }
  128. var st = e2();
  129. var at = e2();
  130. function nt(t2, s2, a3, n2) {
  131. const o = ot;
  132. return o[0] = a3[0], o[3] = a3[1], o[6] = a3[2], o[1] = n2[0], o[4] = n2[1], o[7] = n2[2], o[2] = -s2[0], o[5] = -s2[1], o[8] = -s2[2], J(t2, T(t2, o));
  133. }
  134. var ot = e();
  135. var rt = Object.freeze(Object.defineProperty({ __proto__: null, identity: b, setAxisAngle: v2, getAxisAngle: x2, multiply: y2, rotateX: A, rotateY: I, rotateZ: E2, calculateW: _2, slerp: z2, random: L, invert: O, conjugate: S, fromMat3: T, fromEuler: k, str: w, copy: B, set: C, add: D2, mul: F, scale: G, dot: R, lerp: W, length: X, len: Y2, squaredLength: Z, sqrLen: H, normalize: J, exactEquals: K, equals: N, rotationTo: Q, sqlerp: tt, setAxes: nt }, Symbol.toStringTag, { value: "Module" }));
  136. export {
  137. v2 as v,
  138. x2 as x,
  139. y2 as y,
  140. S,
  141. k,
  142. K
  143. };
  144. //# sourceMappingURL=chunk-5W6F4NR5.js.map