1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132 |
- import Cartesian2 from "./Cartesian2.js";
- import Cartesian3 from "./Cartesian3.js";
- import Cartesian4 from "./Cartesian4.js";
- import Cartographic from "./Cartographic.js";
- import Check from "./Check.js";
- import defaultValue from "./defaultValue.js";
- import defined from "./defined.js";
- import DeveloperError from "./DeveloperError.js";
- import EarthOrientationParameters from "./EarthOrientationParameters.js";
- import EarthOrientationParametersSample from "./EarthOrientationParametersSample.js";
- import Ellipsoid from "./Ellipsoid.js";
- import HeadingPitchRoll from "./HeadingPitchRoll.js";
- import Iau2006XysData from "./Iau2006XysData.js";
- import Iau2006XysSample from "./Iau2006XysSample.js";
- import JulianDate from "./JulianDate.js";
- import CesiumMath from "./Math.js";
- import Matrix3 from "./Matrix3.js";
- import Matrix4 from "./Matrix4.js";
- import Quaternion from "./Quaternion.js";
- import TimeConstants from "./TimeConstants.js";
- /**
- * Contains functions for transforming positions to various reference frames.
- *
- * @namespace Transforms
- */
- const Transforms = {};
- const vectorProductLocalFrame = {
- up: {
- south: "east",
- north: "west",
- west: "south",
- east: "north",
- },
- down: {
- south: "west",
- north: "east",
- west: "north",
- east: "south",
- },
- south: {
- up: "west",
- down: "east",
- west: "down",
- east: "up",
- },
- north: {
- up: "east",
- down: "west",
- west: "up",
- east: "down",
- },
- west: {
- up: "north",
- down: "south",
- north: "down",
- south: "up",
- },
- east: {
- up: "south",
- down: "north",
- north: "up",
- south: "down",
- },
- };
- const degeneratePositionLocalFrame = {
- north: [-1, 0, 0],
- east: [0, 1, 0],
- up: [0, 0, 1],
- south: [1, 0, 0],
- west: [0, -1, 0],
- down: [0, 0, -1],
- };
- const localFrameToFixedFrameCache = {};
- const scratchCalculateCartesian = {
- east: new Cartesian3(),
- north: new Cartesian3(),
- up: new Cartesian3(),
- west: new Cartesian3(),
- south: new Cartesian3(),
- down: new Cartesian3(),
- };
- let scratchFirstCartesian = new Cartesian3();
- let scratchSecondCartesian = new Cartesian3();
- let scratchThirdCartesian = new Cartesian3();
- /**
- * Generates a function that computes a 4x4 transformation matrix from a reference frame
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * @param {String} firstAxis name of the first axis of the local reference frame. Must be
- * 'east', 'north', 'up', 'west', 'south' or 'down'.
- * @param {String} secondAxis name of the second axis of the local reference frame. Must be
- * 'east', 'north', 'up', 'west', 'south' or 'down'.
- * @return {Transforms.LocalFrameToFixedFrame} The function that will computes a
- * 4x4 transformation matrix from a reference frame, with first axis and second axis compliant with the parameters,
- */
- Transforms.localFrameToFixedFrameGenerator = function (firstAxis, secondAxis) {
- if (
- !vectorProductLocalFrame.hasOwnProperty(firstAxis) ||
- !vectorProductLocalFrame[firstAxis].hasOwnProperty(secondAxis)
- ) {
- throw new DeveloperError(
- "firstAxis and secondAxis must be east, north, up, west, south or down."
- );
- }
- const thirdAxis = vectorProductLocalFrame[firstAxis][secondAxis];
- /**
- * Computes a 4x4 transformation matrix from a reference frame
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * @callback Transforms.LocalFrameToFixedFrame
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- */
- let resultat;
- const hashAxis = firstAxis + secondAxis;
- if (defined(localFrameToFixedFrameCache[hashAxis])) {
- resultat = localFrameToFixedFrameCache[hashAxis];
- } else {
- resultat = function (origin, ellipsoid, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(origin)) {
- throw new DeveloperError("origin is required.");
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix4();
- }
- if (
- Cartesian3.equalsEpsilon(origin, Cartesian3.ZERO, CesiumMath.EPSILON14)
- ) {
- // If x, y, and z are zero, use the degenerate local frame, which is a special case
- Cartesian3.unpack(
- degeneratePositionLocalFrame[firstAxis],
- 0,
- scratchFirstCartesian
- );
- Cartesian3.unpack(
- degeneratePositionLocalFrame[secondAxis],
- 0,
- scratchSecondCartesian
- );
- Cartesian3.unpack(
- degeneratePositionLocalFrame[thirdAxis],
- 0,
- scratchThirdCartesian
- );
- } else if (
- CesiumMath.equalsEpsilon(origin.x, 0.0, CesiumMath.EPSILON14) &&
- CesiumMath.equalsEpsilon(origin.y, 0.0, CesiumMath.EPSILON14)
- ) {
- // If x and y are zero, assume origin is at a pole, which is a special case.
- const sign = CesiumMath.sign(origin.z);
- Cartesian3.unpack(
- degeneratePositionLocalFrame[firstAxis],
- 0,
- scratchFirstCartesian
- );
- if (firstAxis !== "east" && firstAxis !== "west") {
- Cartesian3.multiplyByScalar(
- scratchFirstCartesian,
- sign,
- scratchFirstCartesian
- );
- }
- Cartesian3.unpack(
- degeneratePositionLocalFrame[secondAxis],
- 0,
- scratchSecondCartesian
- );
- if (secondAxis !== "east" && secondAxis !== "west") {
- Cartesian3.multiplyByScalar(
- scratchSecondCartesian,
- sign,
- scratchSecondCartesian
- );
- }
- Cartesian3.unpack(
- degeneratePositionLocalFrame[thirdAxis],
- 0,
- scratchThirdCartesian
- );
- if (thirdAxis !== "east" && thirdAxis !== "west") {
- Cartesian3.multiplyByScalar(
- scratchThirdCartesian,
- sign,
- scratchThirdCartesian
- );
- }
- } else {
- ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
- ellipsoid.geodeticSurfaceNormal(origin, scratchCalculateCartesian.up);
- const up = scratchCalculateCartesian.up;
- const east = scratchCalculateCartesian.east;
- east.x = -origin.y;
- east.y = origin.x;
- east.z = 0.0;
- Cartesian3.normalize(east, scratchCalculateCartesian.east);
- Cartesian3.cross(up, east, scratchCalculateCartesian.north);
- Cartesian3.multiplyByScalar(
- scratchCalculateCartesian.up,
- -1,
- scratchCalculateCartesian.down
- );
- Cartesian3.multiplyByScalar(
- scratchCalculateCartesian.east,
- -1,
- scratchCalculateCartesian.west
- );
- Cartesian3.multiplyByScalar(
- scratchCalculateCartesian.north,
- -1,
- scratchCalculateCartesian.south
- );
- scratchFirstCartesian = scratchCalculateCartesian[firstAxis];
- scratchSecondCartesian = scratchCalculateCartesian[secondAxis];
- scratchThirdCartesian = scratchCalculateCartesian[thirdAxis];
- }
- result[0] = scratchFirstCartesian.x;
- result[1] = scratchFirstCartesian.y;
- result[2] = scratchFirstCartesian.z;
- result[3] = 0.0;
- result[4] = scratchSecondCartesian.x;
- result[5] = scratchSecondCartesian.y;
- result[6] = scratchSecondCartesian.z;
- result[7] = 0.0;
- result[8] = scratchThirdCartesian.x;
- result[9] = scratchThirdCartesian.y;
- result[10] = scratchThirdCartesian.z;
- result[11] = 0.0;
- result[12] = origin.x;
- result[13] = origin.y;
- result[14] = origin.z;
- result[15] = 1.0;
- return result;
- };
- localFrameToFixedFrameCache[hashAxis] = resultat;
- }
- return resultat;
- };
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an east-north-up axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local east direction.</li>
- * <li>The <code>y</code> axis points in the local north direction.</li>
- * <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local east-north-up at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const transform = Cesium.Transforms.eastNorthUpToFixedFrame(center);
- */
- Transforms.eastNorthUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
- "east",
- "north"
- );
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-east-down axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the local east direction.</li>
- * <li>The <code>z</code> axis points in the opposite direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-east-down at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const transform = Cesium.Transforms.northEastDownToFixedFrame(center);
- */
- Transforms.northEastDownToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
- "north",
- "east"
- );
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-up-east axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * <li>The <code>z</code> axis points in the local east direction.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-up-east at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const transform = Cesium.Transforms.northUpEastToFixedFrame(center);
- */
- Transforms.northUpEastToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
- "north",
- "up"
- );
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-west-up axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the local west direction.</li>
- * <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-West-Up at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const transform = Cesium.Transforms.northWestUpToFixedFrame(center);
- */
- Transforms.northWestUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator(
- "north",
- "west"
- );
- const scratchHPRQuaternion = new Quaternion();
- const scratchScale = new Cartesian3(1.0, 1.0, 1.0);
- const scratchHPRMatrix4 = new Matrix4();
- /**
- * Computes a 4x4 transformation matrix from a reference frame with axes computed from the heading-pitch-roll angles
- * centered at the provided origin to the provided ellipsoid's fixed reference frame. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const heading = -Cesium.Math.PI_OVER_TWO;
- * const pitch = Cesium.Math.PI_OVER_FOUR;
- * const roll = 0.0;
- * const hpr = new Cesium.HeadingPitchRoll(heading, pitch, roll);
- * const transform = Cesium.Transforms.headingPitchRollToFixedFrame(center, hpr);
- */
- Transforms.headingPitchRollToFixedFrame = function (
- origin,
- headingPitchRoll,
- ellipsoid,
- fixedFrameTransform,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("HeadingPitchRoll", headingPitchRoll);
- //>>includeEnd('debug');
- fixedFrameTransform = defaultValue(
- fixedFrameTransform,
- Transforms.eastNorthUpToFixedFrame
- );
- const hprQuaternion = Quaternion.fromHeadingPitchRoll(
- headingPitchRoll,
- scratchHPRQuaternion
- );
- const hprMatrix = Matrix4.fromTranslationQuaternionRotationScale(
- Cartesian3.ZERO,
- hprQuaternion,
- scratchScale,
- scratchHPRMatrix4
- );
- result = fixedFrameTransform(origin, ellipsoid, result);
- return Matrix4.multiply(result, hprMatrix, result);
- };
- const scratchENUMatrix4 = new Matrix4();
- const scratchHPRMatrix3 = new Matrix3();
- /**
- * Computes a quaternion from a reference frame with axes computed from the heading-pitch-roll angles
- * centered at the provided origin. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {Quaternion} [result] The object onto which to store the result.
- * @returns {Quaternion} The modified result parameter or a new Quaternion instance if none was provided.
- *
- * @example
- * // Get the quaternion from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
- * const center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const heading = -Cesium.Math.PI_OVER_TWO;
- * const pitch = Cesium.Math.PI_OVER_FOUR;
- * const roll = 0.0;
- * const hpr = new HeadingPitchRoll(heading, pitch, roll);
- * const quaternion = Cesium.Transforms.headingPitchRollQuaternion(center, hpr);
- */
- Transforms.headingPitchRollQuaternion = function (
- origin,
- headingPitchRoll,
- ellipsoid,
- fixedFrameTransform,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("HeadingPitchRoll", headingPitchRoll);
- //>>includeEnd('debug');
- const transform = Transforms.headingPitchRollToFixedFrame(
- origin,
- headingPitchRoll,
- ellipsoid,
- fixedFrameTransform,
- scratchENUMatrix4
- );
- const rotation = Matrix4.getMatrix3(transform, scratchHPRMatrix3);
- return Quaternion.fromRotationMatrix(rotation, result);
- };
- const noScale = new Cartesian3(1.0, 1.0, 1.0);
- const hprCenterScratch = new Cartesian3();
- const ffScratch = new Matrix4();
- const hprTransformScratch = new Matrix4();
- const hprRotationScratch = new Matrix3();
- const hprQuaternionScratch = new Quaternion();
- /**
- * Computes heading-pitch-roll angles from a transform in a particular reference frame. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Matrix4} transform The transform
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms.LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {HeadingPitchRoll} [result] The object onto which to store the result.
- * @returns {HeadingPitchRoll} The modified result parameter or a new HeadingPitchRoll instance if none was provided.
- */
- Transforms.fixedFrameToHeadingPitchRoll = function (
- transform,
- ellipsoid,
- fixedFrameTransform,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.defined("transform", transform);
- //>>includeEnd('debug');
- ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
- fixedFrameTransform = defaultValue(
- fixedFrameTransform,
- Transforms.eastNorthUpToFixedFrame
- );
- if (!defined(result)) {
- result = new HeadingPitchRoll();
- }
- const center = Matrix4.getTranslation(transform, hprCenterScratch);
- if (Cartesian3.equals(center, Cartesian3.ZERO)) {
- result.heading = 0;
- result.pitch = 0;
- result.roll = 0;
- return result;
- }
- let toFixedFrame = Matrix4.inverseTransformation(
- fixedFrameTransform(center, ellipsoid, ffScratch),
- ffScratch
- );
- let transformCopy = Matrix4.setScale(transform, noScale, hprTransformScratch);
- transformCopy = Matrix4.setTranslation(
- transformCopy,
- Cartesian3.ZERO,
- transformCopy
- );
- toFixedFrame = Matrix4.multiply(toFixedFrame, transformCopy, toFixedFrame);
- let quaternionRotation = Quaternion.fromRotationMatrix(
- Matrix4.getMatrix3(toFixedFrame, hprRotationScratch),
- hprQuaternionScratch
- );
- quaternionRotation = Quaternion.normalize(
- quaternionRotation,
- quaternionRotation
- );
- return HeadingPitchRoll.fromQuaternion(quaternionRotation, result);
- };
- const gmstConstant0 = 6 * 3600 + 41 * 60 + 50.54841;
- const gmstConstant1 = 8640184.812866;
- const gmstConstant2 = 0.093104;
- const gmstConstant3 = -6.2e-6;
- const rateCoef = 1.1772758384668e-19;
- const wgs84WRPrecessing = 7.2921158553e-5;
- const twoPiOverSecondsInDay = CesiumMath.TWO_PI / 86400.0;
- let dateInUtc = new JulianDate();
- /**
- * Computes a rotation matrix to transform a point or vector from True Equator Mean Equinox (TEME) axes to the
- * pseudo-fixed axes at a given time. This method treats the UT1 time standard as equivalent to UTC.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result.
- * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if none was provided.
- *
- * @example
- * //Set the view to the inertial frame.
- * scene.postUpdate.addEventListener(function(scene, time) {
- * const now = Cesium.JulianDate.now();
- * const offset = Cesium.Matrix4.multiplyByPoint(camera.transform, camera.position, new Cesium.Cartesian3());
- * const transform = Cesium.Matrix4.fromRotationTranslation(Cesium.Transforms.computeTemeToPseudoFixedMatrix(now));
- * const inverseTransform = Cesium.Matrix4.inverseTransformation(transform, new Cesium.Matrix4());
- * Cesium.Matrix4.multiplyByPoint(inverseTransform, offset, offset);
- * camera.lookAtTransform(transform, offset);
- * });
- */
- Transforms.computeTemeToPseudoFixedMatrix = function (date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError("date is required.");
- }
- //>>includeEnd('debug');
- // GMST is actually computed using UT1. We're using UTC as an approximation of UT1.
- // We do not want to use the function like convertTaiToUtc in JulianDate because
- // we explicitly do not want to fail when inside the leap second.
- dateInUtc = JulianDate.addSeconds(
- date,
- -JulianDate.computeTaiMinusUtc(date),
- dateInUtc
- );
- const utcDayNumber = dateInUtc.dayNumber;
- const utcSecondsIntoDay = dateInUtc.secondsOfDay;
- let t;
- const diffDays = utcDayNumber - 2451545;
- if (utcSecondsIntoDay >= 43200.0) {
- t = (diffDays + 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
- } else {
- t = (diffDays - 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
- }
- const gmst0 =
- gmstConstant0 +
- t * (gmstConstant1 + t * (gmstConstant2 + t * gmstConstant3));
- const angle = (gmst0 * twoPiOverSecondsInDay) % CesiumMath.TWO_PI;
- const ratio = wgs84WRPrecessing + rateCoef * (utcDayNumber - 2451545.5);
- const secondsSinceMidnight =
- (utcSecondsIntoDay + TimeConstants.SECONDS_PER_DAY * 0.5) %
- TimeConstants.SECONDS_PER_DAY;
- const gha = angle + ratio * secondsSinceMidnight;
- const cosGha = Math.cos(gha);
- const sinGha = Math.sin(gha);
- if (!defined(result)) {
- return new Matrix3(
- cosGha,
- sinGha,
- 0.0,
- -sinGha,
- cosGha,
- 0.0,
- 0.0,
- 0.0,
- 1.0
- );
- }
- result[0] = cosGha;
- result[1] = -sinGha;
- result[2] = 0.0;
- result[3] = sinGha;
- result[4] = cosGha;
- result[5] = 0.0;
- result[6] = 0.0;
- result[7] = 0.0;
- result[8] = 1.0;
- return result;
- };
- /**
- * The source of IAU 2006 XYS data, used for computing the transformation between the
- * Fixed and ICRF axes.
- * @type {Iau2006XysData}
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- *
- * @private
- */
- Transforms.iau2006XysData = new Iau2006XysData();
- /**
- * The source of Earth Orientation Parameters (EOP) data, used for computing the transformation
- * between the Fixed and ICRF axes. By default, zero values are used for all EOP values,
- * yielding a reasonable but not completely accurate representation of the ICRF axes.
- * @type {EarthOrientationParameters}
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- *
- * @private
- */
- Transforms.earthOrientationParameters = EarthOrientationParameters.NONE;
- const ttMinusTai = 32.184;
- const j2000ttDays = 2451545.0;
- /**
- * Preloads the data necessary to transform between the ICRF and Fixed axes, in either
- * direction, over a given interval. This function returns a promise that, when resolved,
- * indicates that the preload has completed.
- *
- * @param {TimeInterval} timeInterval The interval to preload.
- * @returns {Promise<void>} A promise that, when resolved, indicates that the preload has completed
- * and evaluation of the transformation between the fixed and ICRF axes will
- * no longer return undefined for a time inside the interval.
- *
- *
- * @example
- * const interval = new Cesium.TimeInterval(...);
- * Promise.resolve(Cesium.Transforms.preloadIcrfFixed(interval)).then(function() {
- * // the data is now loaded
- * });
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- */
- Transforms.preloadIcrfFixed = function (timeInterval) {
- const startDayTT = timeInterval.start.dayNumber;
- const startSecondTT = timeInterval.start.secondsOfDay + ttMinusTai;
- const stopDayTT = timeInterval.stop.dayNumber;
- const stopSecondTT = timeInterval.stop.secondsOfDay + ttMinusTai;
- const xysPromise = Transforms.iau2006XysData.preload(
- startDayTT,
- startSecondTT,
- stopDayTT,
- stopSecondTT
- );
- const eopPromise = Transforms.earthOrientationParameters.getPromiseToLoad();
- return Promise.all([xysPromise, eopPromise]);
- };
- /**
- * Computes a rotation matrix to transform a point or vector from the International Celestial
- * Reference Frame (GCRF/ICRF) inertial frame axes to the Earth-Fixed frame axes (ITRF)
- * at a given time. This function may return undefined if the data necessary to
- * do the transformation is not yet loaded.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result. If this parameter is
- * not specified, a new instance is created and returned.
- * @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
- * transformation is not yet loaded.
- *
- *
- * @example
- * scene.postUpdate.addEventListener(function(scene, time) {
- * // View in ICRF.
- * const icrfToFixed = Cesium.Transforms.computeIcrfToFixedMatrix(time);
- * if (Cesium.defined(icrfToFixed)) {
- * const offset = Cesium.Cartesian3.clone(camera.position);
- * const transform = Cesium.Matrix4.fromRotationTranslation(icrfToFixed);
- * camera.lookAtTransform(transform, offset);
- * }
- * });
- *
- * @see Transforms.preloadIcrfFixed
- */
- Transforms.computeIcrfToFixedMatrix = function (date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError("date is required.");
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix3();
- }
- const fixedToIcrfMtx = Transforms.computeFixedToIcrfMatrix(date, result);
- if (!defined(fixedToIcrfMtx)) {
- return undefined;
- }
- return Matrix3.transpose(fixedToIcrfMtx, result);
- };
- const xysScratch = new Iau2006XysSample(0.0, 0.0, 0.0);
- const eopScratch = new EarthOrientationParametersSample(
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0
- );
- const rotation1Scratch = new Matrix3();
- const rotation2Scratch = new Matrix3();
- /**
- * Computes a rotation matrix to transform a point or vector from the Earth-Fixed frame axes (ITRF)
- * to the International Celestial Reference Frame (GCRF/ICRF) inertial frame axes
- * at a given time. This function may return undefined if the data necessary to
- * do the transformation is not yet loaded.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result. If this parameter is
- * not specified, a new instance is created and returned.
- * @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
- * transformation is not yet loaded.
- *
- *
- * @example
- * // Transform a point from the ICRF axes to the Fixed axes.
- * const now = Cesium.JulianDate.now();
- * const pointInFixed = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * const fixedToIcrf = Cesium.Transforms.computeIcrfToFixedMatrix(now);
- * let pointInInertial = new Cesium.Cartesian3();
- * if (Cesium.defined(fixedToIcrf)) {
- * pointInInertial = Cesium.Matrix3.multiplyByVector(fixedToIcrf, pointInFixed, pointInInertial);
- * }
- *
- * @see Transforms.preloadIcrfFixed
- */
- Transforms.computeFixedToIcrfMatrix = function (date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError("date is required.");
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix3();
- }
- // Compute pole wander
- const eop = Transforms.earthOrientationParameters.compute(date, eopScratch);
- if (!defined(eop)) {
- return undefined;
- }
- // There is no external conversion to Terrestrial Time (TT).
- // So use International Atomic Time (TAI) and convert using offsets.
- // Here we are assuming that dayTT and secondTT are positive
- const dayTT = date.dayNumber;
- // It's possible here that secondTT could roll over 86400
- // This does not seem to affect the precision (unit tests check for this)
- const secondTT = date.secondsOfDay + ttMinusTai;
- const xys = Transforms.iau2006XysData.computeXysRadians(
- dayTT,
- secondTT,
- xysScratch
- );
- if (!defined(xys)) {
- return undefined;
- }
- const x = xys.x + eop.xPoleOffset;
- const y = xys.y + eop.yPoleOffset;
- // Compute XYS rotation
- const a = 1.0 / (1.0 + Math.sqrt(1.0 - x * x - y * y));
- const rotation1 = rotation1Scratch;
- rotation1[0] = 1.0 - a * x * x;
- rotation1[3] = -a * x * y;
- rotation1[6] = x;
- rotation1[1] = -a * x * y;
- rotation1[4] = 1 - a * y * y;
- rotation1[7] = y;
- rotation1[2] = -x;
- rotation1[5] = -y;
- rotation1[8] = 1 - a * (x * x + y * y);
- const rotation2 = Matrix3.fromRotationZ(-xys.s, rotation2Scratch);
- const matrixQ = Matrix3.multiply(rotation1, rotation2, rotation1Scratch);
- // Similar to TT conversions above
- // It's possible here that secondTT could roll over 86400
- // This does not seem to affect the precision (unit tests check for this)
- const dateUt1day = date.dayNumber;
- const dateUt1sec =
- date.secondsOfDay - JulianDate.computeTaiMinusUtc(date) + eop.ut1MinusUtc;
- // Compute Earth rotation angle
- // The IERS standard for era is
- // era = 0.7790572732640 + 1.00273781191135448 * Tu
- // where
- // Tu = JulianDateInUt1 - 2451545.0
- // However, you get much more precision if you make the following simplification
- // era = a + (1 + b) * (JulianDayNumber + FractionOfDay - 2451545)
- // era = a + (JulianDayNumber - 2451545) + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
- // era = a + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
- // since (JulianDayNumber - 2451545) represents an integer number of revolutions which will be discarded anyway.
- const daysSinceJ2000 = dateUt1day - 2451545;
- const fractionOfDay = dateUt1sec / TimeConstants.SECONDS_PER_DAY;
- let era =
- 0.779057273264 +
- fractionOfDay +
- 0.00273781191135448 * (daysSinceJ2000 + fractionOfDay);
- era = (era % 1.0) * CesiumMath.TWO_PI;
- const earthRotation = Matrix3.fromRotationZ(era, rotation2Scratch);
- // pseudoFixed to ICRF
- const pfToIcrf = Matrix3.multiply(matrixQ, earthRotation, rotation1Scratch);
- // Compute pole wander matrix
- const cosxp = Math.cos(eop.xPoleWander);
- const cosyp = Math.cos(eop.yPoleWander);
- const sinxp = Math.sin(eop.xPoleWander);
- const sinyp = Math.sin(eop.yPoleWander);
- let ttt = dayTT - j2000ttDays + secondTT / TimeConstants.SECONDS_PER_DAY;
- ttt /= 36525.0;
- // approximate sp value in rad
- const sp = (-47.0e-6 * ttt * CesiumMath.RADIANS_PER_DEGREE) / 3600.0;
- const cossp = Math.cos(sp);
- const sinsp = Math.sin(sp);
- const fToPfMtx = rotation2Scratch;
- fToPfMtx[0] = cosxp * cossp;
- fToPfMtx[1] = cosxp * sinsp;
- fToPfMtx[2] = sinxp;
- fToPfMtx[3] = -cosyp * sinsp + sinyp * sinxp * cossp;
- fToPfMtx[4] = cosyp * cossp + sinyp * sinxp * sinsp;
- fToPfMtx[5] = -sinyp * cosxp;
- fToPfMtx[6] = -sinyp * sinsp - cosyp * sinxp * cossp;
- fToPfMtx[7] = sinyp * cossp - cosyp * sinxp * sinsp;
- fToPfMtx[8] = cosyp * cosxp;
- return Matrix3.multiply(pfToIcrf, fToPfMtx, result);
- };
- const pointToWindowCoordinatesTemp = new Cartesian4();
- /**
- * Transform a point from model coordinates to window coordinates.
- *
- * @param {Matrix4} modelViewProjectionMatrix The 4x4 model-view-projection matrix.
- * @param {Matrix4} viewportTransformation The 4x4 viewport transformation.
- * @param {Cartesian3} point The point to transform.
- * @param {Cartesian2} [result] The object onto which to store the result.
- * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if none was provided.
- */
- Transforms.pointToWindowCoordinates = function (
- modelViewProjectionMatrix,
- viewportTransformation,
- point,
- result
- ) {
- result = Transforms.pointToGLWindowCoordinates(
- modelViewProjectionMatrix,
- viewportTransformation,
- point,
- result
- );
- result.y = 2.0 * viewportTransformation[5] - result.y;
- return result;
- };
- /**
- * @private
- */
- Transforms.pointToGLWindowCoordinates = function (
- modelViewProjectionMatrix,
- viewportTransformation,
- point,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(modelViewProjectionMatrix)) {
- throw new DeveloperError("modelViewProjectionMatrix is required.");
- }
- if (!defined(viewportTransformation)) {
- throw new DeveloperError("viewportTransformation is required.");
- }
- if (!defined(point)) {
- throw new DeveloperError("point is required.");
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian2();
- }
- const tmp = pointToWindowCoordinatesTemp;
- Matrix4.multiplyByVector(
- modelViewProjectionMatrix,
- Cartesian4.fromElements(point.x, point.y, point.z, 1, tmp),
- tmp
- );
- Cartesian4.multiplyByScalar(tmp, 1.0 / tmp.w, tmp);
- Matrix4.multiplyByVector(viewportTransformation, tmp, tmp);
- return Cartesian2.fromCartesian4(tmp, result);
- };
- const normalScratch = new Cartesian3();
- const rightScratch = new Cartesian3();
- const upScratch = new Cartesian3();
- /**
- * Transform a position and velocity to a rotation matrix.
- *
- * @param {Cartesian3} position The position to transform.
- * @param {Cartesian3} velocity The velocity vector to transform.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix3} [result] The object onto which to store the result.
- * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if none was provided.
- */
- Transforms.rotationMatrixFromPositionVelocity = function (
- position,
- velocity,
- ellipsoid,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(position)) {
- throw new DeveloperError("position is required.");
- }
- if (!defined(velocity)) {
- throw new DeveloperError("velocity is required.");
- }
- //>>includeEnd('debug');
- const normal = defaultValue(ellipsoid, Ellipsoid.WGS84).geodeticSurfaceNormal(
- position,
- normalScratch
- );
- let right = Cartesian3.cross(velocity, normal, rightScratch);
- if (Cartesian3.equalsEpsilon(right, Cartesian3.ZERO, CesiumMath.EPSILON6)) {
- right = Cartesian3.clone(Cartesian3.UNIT_X, right);
- }
- const up = Cartesian3.cross(right, velocity, upScratch);
- Cartesian3.normalize(up, up);
- Cartesian3.cross(velocity, up, right);
- Cartesian3.negate(right, right);
- Cartesian3.normalize(right, right);
- if (!defined(result)) {
- result = new Matrix3();
- }
- result[0] = velocity.x;
- result[1] = velocity.y;
- result[2] = velocity.z;
- result[3] = right.x;
- result[4] = right.y;
- result[5] = right.z;
- result[6] = up.x;
- result[7] = up.y;
- result[8] = up.z;
- return result;
- };
- const swizzleMatrix = new Matrix4(
- 0.0,
- 0.0,
- 1.0,
- 0.0,
- 1.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 1.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 1.0
- );
- const scratchCartographic = new Cartographic();
- const scratchCartesian3Projection = new Cartesian3();
- const scratchCenter = new Cartesian3();
- const scratchRotation = new Matrix3();
- const scratchFromENU = new Matrix4();
- const scratchToENU = new Matrix4();
- /**
- * @private
- */
- Transforms.basisTo2D = function (projection, matrix, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(projection)) {
- throw new DeveloperError("projection is required.");
- }
- if (!defined(matrix)) {
- throw new DeveloperError("matrix is required.");
- }
- if (!defined(result)) {
- throw new DeveloperError("result is required.");
- }
- //>>includeEnd('debug');
- const rtcCenter = Matrix4.getTranslation(matrix, scratchCenter);
- const ellipsoid = projection.ellipsoid;
- // Get the 2D Center
- const cartographic = ellipsoid.cartesianToCartographic(
- rtcCenter,
- scratchCartographic
- );
- const projectedPosition = projection.project(
- cartographic,
- scratchCartesian3Projection
- );
- Cartesian3.fromElements(
- projectedPosition.z,
- projectedPosition.x,
- projectedPosition.y,
- projectedPosition
- );
- // Assuming the instance are positioned in WGS84, invert the WGS84 transform to get the local transform and then convert to 2D
- const fromENU = Transforms.eastNorthUpToFixedFrame(
- rtcCenter,
- ellipsoid,
- scratchFromENU
- );
- const toENU = Matrix4.inverseTransformation(fromENU, scratchToENU);
- const rotation = Matrix4.getMatrix3(matrix, scratchRotation);
- const local = Matrix4.multiplyByMatrix3(toENU, rotation, result);
- Matrix4.multiply(swizzleMatrix, local, result); // Swap x, y, z for 2D
- Matrix4.setTranslation(result, projectedPosition, result); // Use the projected center
- return result;
- };
- /**
- * @private
- */
- Transforms.wgs84To2DModelMatrix = function (projection, center, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(projection)) {
- throw new DeveloperError("projection is required.");
- }
- if (!defined(center)) {
- throw new DeveloperError("center is required.");
- }
- if (!defined(result)) {
- throw new DeveloperError("result is required.");
- }
- //>>includeEnd('debug');
- const ellipsoid = projection.ellipsoid;
- const fromENU = Transforms.eastNorthUpToFixedFrame(
- center,
- ellipsoid,
- scratchFromENU
- );
- const toENU = Matrix4.inverseTransformation(fromENU, scratchToENU);
- const cartographic = ellipsoid.cartesianToCartographic(
- center,
- scratchCartographic
- );
- const projectedPosition = projection.project(
- cartographic,
- scratchCartesian3Projection
- );
- Cartesian3.fromElements(
- projectedPosition.z,
- projectedPosition.x,
- projectedPosition.y,
- projectedPosition
- );
- const translation = Matrix4.fromTranslation(
- projectedPosition,
- scratchFromENU
- );
- Matrix4.multiply(swizzleMatrix, toENU, result);
- Matrix4.multiply(translation, result, result);
- return result;
- };
- export default Transforms;
|