|
|
преди 2 години | |
|---|---|---|
| .. | ||
| dist | преди 2 години | |
| LICENSE | преди 2 години | |
| README.md | преди 2 години | |
| package.json | преди 2 години | |
calcualte the Minkowski p-norm distance between two features.
Parameters
feature1 point featurefeature2 point featurep p-norm 1=<p<=infinity 1: Manhattan distance 2: Euclidean distanceParameters
fc FeatureCollection<any> FeatureCollection.options Object? option object.
options.threshold number If the distance between neighbor and
target features is greater than threshold, the weight of that neighbor is 0. (optional, default 10000)options.p number Minkowski p-norm distance parameter.
1: Manhattan distance. 2: Euclidean distance. 1=<p<=infinity. (optional, default 2)options.binary boolean If true, weight=1 if d <= threshold otherwise weight=0.
If false, weight=Math.pow(d, alpha). (optional, default false)options.alpha number distance decay parameter.
A big value means the weight decay quickly as distance increases. (optional, default -1)options.standardization boolean row standardization. (optional, default false)Examples
var bbox = [-65, 40, -63, 42];
var dataset = turf.randomPoint(100, { bbox: bbox });
var result = turf.distanceWeight(dataset);
Returns Array<Array<number>> distance weight matrix.
This module is part of the Turfjs project, an open source module collection dedicated to geographic algorithms. It is maintained in the Turfjs/turf repository, where you can create PRs and issues.
Install this module individually:
$ npm install @turf/distance-weight
Or install the Turf module that includes it as a function:
$ npm install @turf/turf