12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220 |
- /* This file is automatically rebuilt by the Cesium build process. */
- define(['exports', './Matrix2-69c32d33', './RuntimeError-c581ca93', './ComponentDatatype-b1ea011a', './defaultValue-94c3e563', './EllipsoidRhumbLine-5cb6da82', './GeometryAttribute-cb73bb3f', './WebGLConstants-7dccdc96'], (function (exports, Matrix2, RuntimeError, ComponentDatatype, defaultValue, EllipsoidRhumbLine, GeometryAttribute, WebGLConstants) { 'use strict';
- /* This file is automatically rebuilt by the Cesium build process. */
- var earcut_1 = earcut;
- var _default = earcut;
- function earcut(data, holeIndices, dim) {
- dim = dim || 2;
- var hasHoles = holeIndices && holeIndices.length,
- outerLen = hasHoles ? holeIndices[0] * dim : data.length,
- outerNode = linkedList(data, 0, outerLen, dim, true),
- triangles = [];
- if (!outerNode || outerNode.next === outerNode.prev) return triangles;
- var minX, minY, maxX, maxY, x, y, invSize;
- if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
- // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
- if (data.length > 80 * dim) {
- minX = maxX = data[0];
- minY = maxY = data[1];
- for (var i = dim; i < outerLen; i += dim) {
- x = data[i];
- y = data[i + 1];
- if (x < minX) minX = x;
- if (y < minY) minY = y;
- if (x > maxX) maxX = x;
- if (y > maxY) maxY = y;
- }
- // minX, minY and invSize are later used to transform coords into integers for z-order calculation
- invSize = Math.max(maxX - minX, maxY - minY);
- invSize = invSize !== 0 ? 1 / invSize : 0;
- }
- earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
- return triangles;
- }
- // create a circular doubly linked list from polygon points in the specified winding order
- function linkedList(data, start, end, dim, clockwise) {
- var i, last;
- if (clockwise === (signedArea(data, start, end, dim) > 0)) {
- for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
- } else {
- for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
- }
- if (last && equals(last, last.next)) {
- removeNode(last);
- last = last.next;
- }
- return last;
- }
- // eliminate colinear or duplicate points
- function filterPoints(start, end) {
- if (!start) return start;
- if (!end) end = start;
- var p = start,
- again;
- do {
- again = false;
- if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
- removeNode(p);
- p = end = p.prev;
- if (p === p.next) break;
- again = true;
- } else {
- p = p.next;
- }
- } while (again || p !== end);
- return end;
- }
- // main ear slicing loop which triangulates a polygon (given as a linked list)
- function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
- if (!ear) return;
- // interlink polygon nodes in z-order
- if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
- var stop = ear,
- prev, next;
- // iterate through ears, slicing them one by one
- while (ear.prev !== ear.next) {
- prev = ear.prev;
- next = ear.next;
- if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
- // cut off the triangle
- triangles.push(prev.i / dim);
- triangles.push(ear.i / dim);
- triangles.push(next.i / dim);
- removeNode(ear);
- // skipping the next vertex leads to less sliver triangles
- ear = next.next;
- stop = next.next;
- continue;
- }
- ear = next;
- // if we looped through the whole remaining polygon and can't find any more ears
- if (ear === stop) {
- // try filtering points and slicing again
- if (!pass) {
- earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
- // if this didn't work, try curing all small self-intersections locally
- } else if (pass === 1) {
- ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
- earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
- // as a last resort, try splitting the remaining polygon into two
- } else if (pass === 2) {
- splitEarcut(ear, triangles, dim, minX, minY, invSize);
- }
- break;
- }
- }
- }
- // check whether a polygon node forms a valid ear with adjacent nodes
- function isEar(ear) {
- var a = ear.prev,
- b = ear,
- c = ear.next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // now make sure we don't have other points inside the potential ear
- var p = ear.next.next;
- while (p !== ear.prev) {
- if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
- area(p.prev, p, p.next) >= 0) return false;
- p = p.next;
- }
- return true;
- }
- function isEarHashed(ear, minX, minY, invSize) {
- var a = ear.prev,
- b = ear,
- c = ear.next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // triangle bbox; min & max are calculated like this for speed
- var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x),
- minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y),
- maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x),
- maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);
- // z-order range for the current triangle bbox;
- var minZ = zOrder(minTX, minTY, minX, minY, invSize),
- maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
- var p = ear.prevZ,
- n = ear.nextZ;
- // look for points inside the triangle in both directions
- while (p && p.z >= minZ && n && n.z <= maxZ) {
- if (p !== ear.prev && p !== ear.next &&
- pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
- area(p.prev, p, p.next) >= 0) return false;
- p = p.prevZ;
- if (n !== ear.prev && n !== ear.next &&
- pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
- area(n.prev, n, n.next) >= 0) return false;
- n = n.nextZ;
- }
- // look for remaining points in decreasing z-order
- while (p && p.z >= minZ) {
- if (p !== ear.prev && p !== ear.next &&
- pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
- area(p.prev, p, p.next) >= 0) return false;
- p = p.prevZ;
- }
- // look for remaining points in increasing z-order
- while (n && n.z <= maxZ) {
- if (n !== ear.prev && n !== ear.next &&
- pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
- area(n.prev, n, n.next) >= 0) return false;
- n = n.nextZ;
- }
- return true;
- }
- // go through all polygon nodes and cure small local self-intersections
- function cureLocalIntersections(start, triangles, dim) {
- var p = start;
- do {
- var a = p.prev,
- b = p.next.next;
- if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
- triangles.push(a.i / dim);
- triangles.push(p.i / dim);
- triangles.push(b.i / dim);
- // remove two nodes involved
- removeNode(p);
- removeNode(p.next);
- p = start = b;
- }
- p = p.next;
- } while (p !== start);
- return filterPoints(p);
- }
- // try splitting polygon into two and triangulate them independently
- function splitEarcut(start, triangles, dim, minX, minY, invSize) {
- // look for a valid diagonal that divides the polygon into two
- var a = start;
- do {
- var b = a.next.next;
- while (b !== a.prev) {
- if (a.i !== b.i && isValidDiagonal(a, b)) {
- // split the polygon in two by the diagonal
- var c = splitPolygon(a, b);
- // filter colinear points around the cuts
- a = filterPoints(a, a.next);
- c = filterPoints(c, c.next);
- // run earcut on each half
- earcutLinked(a, triangles, dim, minX, minY, invSize);
- earcutLinked(c, triangles, dim, minX, minY, invSize);
- return;
- }
- b = b.next;
- }
- a = a.next;
- } while (a !== start);
- }
- // link every hole into the outer loop, producing a single-ring polygon without holes
- function eliminateHoles(data, holeIndices, outerNode, dim) {
- var queue = [],
- i, len, start, end, list;
- for (i = 0, len = holeIndices.length; i < len; i++) {
- start = holeIndices[i] * dim;
- end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
- list = linkedList(data, start, end, dim, false);
- if (list === list.next) list.steiner = true;
- queue.push(getLeftmost(list));
- }
- queue.sort(compareX);
- // process holes from left to right
- for (i = 0; i < queue.length; i++) {
- outerNode = eliminateHole(queue[i], outerNode);
- outerNode = filterPoints(outerNode, outerNode.next);
- }
- return outerNode;
- }
- function compareX(a, b) {
- return a.x - b.x;
- }
- // find a bridge between vertices that connects hole with an outer ring and and link it
- function eliminateHole(hole, outerNode) {
- var bridge = findHoleBridge(hole, outerNode);
- if (!bridge) {
- return outerNode;
- }
- var bridgeReverse = splitPolygon(bridge, hole);
- // filter collinear points around the cuts
- var filteredBridge = filterPoints(bridge, bridge.next);
- filterPoints(bridgeReverse, bridgeReverse.next);
- // Check if input node was removed by the filtering
- return outerNode === bridge ? filteredBridge : outerNode;
- }
- // David Eberly's algorithm for finding a bridge between hole and outer polygon
- function findHoleBridge(hole, outerNode) {
- var p = outerNode,
- hx = hole.x,
- hy = hole.y,
- qx = -Infinity,
- m;
- // find a segment intersected by a ray from the hole's leftmost point to the left;
- // segment's endpoint with lesser x will be potential connection point
- do {
- if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
- var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
- if (x <= hx && x > qx) {
- qx = x;
- if (x === hx) {
- if (hy === p.y) return p;
- if (hy === p.next.y) return p.next;
- }
- m = p.x < p.next.x ? p : p.next;
- }
- }
- p = p.next;
- } while (p !== outerNode);
- if (!m) return null;
- if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
- // look for points inside the triangle of hole point, segment intersection and endpoint;
- // if there are no points found, we have a valid connection;
- // otherwise choose the point of the minimum angle with the ray as connection point
- var stop = m,
- mx = m.x,
- my = m.y,
- tanMin = Infinity,
- tan;
- p = m;
- do {
- if (hx >= p.x && p.x >= mx && hx !== p.x &&
- pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
- tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
- if (locallyInside(p, hole) &&
- (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
- m = p;
- tanMin = tan;
- }
- }
- p = p.next;
- } while (p !== stop);
- return m;
- }
- // whether sector in vertex m contains sector in vertex p in the same coordinates
- function sectorContainsSector(m, p) {
- return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
- }
- // interlink polygon nodes in z-order
- function indexCurve(start, minX, minY, invSize) {
- var p = start;
- do {
- if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
- p.prevZ = p.prev;
- p.nextZ = p.next;
- p = p.next;
- } while (p !== start);
- p.prevZ.nextZ = null;
- p.prevZ = null;
- sortLinked(p);
- }
- // Simon Tatham's linked list merge sort algorithm
- // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
- function sortLinked(list) {
- var i, p, q, e, tail, numMerges, pSize, qSize,
- inSize = 1;
- do {
- p = list;
- list = null;
- tail = null;
- numMerges = 0;
- while (p) {
- numMerges++;
- q = p;
- pSize = 0;
- for (i = 0; i < inSize; i++) {
- pSize++;
- q = q.nextZ;
- if (!q) break;
- }
- qSize = inSize;
- while (pSize > 0 || (qSize > 0 && q)) {
- if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
- e = p;
- p = p.nextZ;
- pSize--;
- } else {
- e = q;
- q = q.nextZ;
- qSize--;
- }
- if (tail) tail.nextZ = e;
- else list = e;
- e.prevZ = tail;
- tail = e;
- }
- p = q;
- }
- tail.nextZ = null;
- inSize *= 2;
- } while (numMerges > 1);
- return list;
- }
- // z-order of a point given coords and inverse of the longer side of data bbox
- function zOrder(x, y, minX, minY, invSize) {
- // coords are transformed into non-negative 15-bit integer range
- x = 32767 * (x - minX) * invSize;
- y = 32767 * (y - minY) * invSize;
- x = (x | (x << 8)) & 0x00FF00FF;
- x = (x | (x << 4)) & 0x0F0F0F0F;
- x = (x | (x << 2)) & 0x33333333;
- x = (x | (x << 1)) & 0x55555555;
- y = (y | (y << 8)) & 0x00FF00FF;
- y = (y | (y << 4)) & 0x0F0F0F0F;
- y = (y | (y << 2)) & 0x33333333;
- y = (y | (y << 1)) & 0x55555555;
- return x | (y << 1);
- }
- // find the leftmost node of a polygon ring
- function getLeftmost(start) {
- var p = start,
- leftmost = start;
- do {
- if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
- p = p.next;
- } while (p !== start);
- return leftmost;
- }
- // check if a point lies within a convex triangle
- function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
- return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
- (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
- (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
- }
- // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
- function isValidDiagonal(a, b) {
- return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
- (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
- (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
- equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
- }
- // signed area of a triangle
- function area(p, q, r) {
- return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
- }
- // check if two points are equal
- function equals(p1, p2) {
- return p1.x === p2.x && p1.y === p2.y;
- }
- // check if two segments intersect
- function intersects(p1, q1, p2, q2) {
- var o1 = sign(area(p1, q1, p2));
- var o2 = sign(area(p1, q1, q2));
- var o3 = sign(area(p2, q2, p1));
- var o4 = sign(area(p2, q2, q1));
- if (o1 !== o2 && o3 !== o4) return true; // general case
- if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
- if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
- if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
- if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
- return false;
- }
- // for collinear points p, q, r, check if point q lies on segment pr
- function onSegment(p, q, r) {
- return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
- }
- function sign(num) {
- return num > 0 ? 1 : num < 0 ? -1 : 0;
- }
- // check if a polygon diagonal intersects any polygon segments
- function intersectsPolygon(a, b) {
- var p = a;
- do {
- if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
- intersects(p, p.next, a, b)) return true;
- p = p.next;
- } while (p !== a);
- return false;
- }
- // check if a polygon diagonal is locally inside the polygon
- function locallyInside(a, b) {
- return area(a.prev, a, a.next) < 0 ?
- area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
- area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
- }
- // check if the middle point of a polygon diagonal is inside the polygon
- function middleInside(a, b) {
- var p = a,
- inside = false,
- px = (a.x + b.x) / 2,
- py = (a.y + b.y) / 2;
- do {
- if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
- (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
- inside = !inside;
- p = p.next;
- } while (p !== a);
- return inside;
- }
- // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
- // if one belongs to the outer ring and another to a hole, it merges it into a single ring
- function splitPolygon(a, b) {
- var a2 = new Node(a.i, a.x, a.y),
- b2 = new Node(b.i, b.x, b.y),
- an = a.next,
- bp = b.prev;
- a.next = b;
- b.prev = a;
- a2.next = an;
- an.prev = a2;
- b2.next = a2;
- a2.prev = b2;
- bp.next = b2;
- b2.prev = bp;
- return b2;
- }
- // create a node and optionally link it with previous one (in a circular doubly linked list)
- function insertNode(i, x, y, last) {
- var p = new Node(i, x, y);
- if (!last) {
- p.prev = p;
- p.next = p;
- } else {
- p.next = last.next;
- p.prev = last;
- last.next.prev = p;
- last.next = p;
- }
- return p;
- }
- function removeNode(p) {
- p.next.prev = p.prev;
- p.prev.next = p.next;
- if (p.prevZ) p.prevZ.nextZ = p.nextZ;
- if (p.nextZ) p.nextZ.prevZ = p.prevZ;
- }
- function Node(i, x, y) {
- // vertex index in coordinates array
- this.i = i;
- // vertex coordinates
- this.x = x;
- this.y = y;
- // previous and next vertex nodes in a polygon ring
- this.prev = null;
- this.next = null;
- // z-order curve value
- this.z = null;
- // previous and next nodes in z-order
- this.prevZ = null;
- this.nextZ = null;
- // indicates whether this is a steiner point
- this.steiner = false;
- }
- // return a percentage difference between the polygon area and its triangulation area;
- // used to verify correctness of triangulation
- earcut.deviation = function (data, holeIndices, dim, triangles) {
- var hasHoles = holeIndices && holeIndices.length;
- var outerLen = hasHoles ? holeIndices[0] * dim : data.length;
- var polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
- if (hasHoles) {
- for (var i = 0, len = holeIndices.length; i < len; i++) {
- var start = holeIndices[i] * dim;
- var end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
- polygonArea -= Math.abs(signedArea(data, start, end, dim));
- }
- }
- var trianglesArea = 0;
- for (i = 0; i < triangles.length; i += 3) {
- var a = triangles[i] * dim;
- var b = triangles[i + 1] * dim;
- var c = triangles[i + 2] * dim;
- trianglesArea += Math.abs(
- (data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
- (data[a] - data[b]) * (data[c + 1] - data[a + 1]));
- }
- return polygonArea === 0 && trianglesArea === 0 ? 0 :
- Math.abs((trianglesArea - polygonArea) / polygonArea);
- };
- function signedArea(data, start, end, dim) {
- var sum = 0;
- for (var i = start, j = end - dim; i < end; i += dim) {
- sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
- j = i;
- }
- return sum;
- }
- // turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
- earcut.flatten = function (data) {
- var dim = data[0][0].length,
- result = {vertices: [], holes: [], dimensions: dim},
- holeIndex = 0;
- for (var i = 0; i < data.length; i++) {
- for (var j = 0; j < data[i].length; j++) {
- for (var d = 0; d < dim; d++) result.vertices.push(data[i][j][d]);
- }
- if (i > 0) {
- holeIndex += data[i - 1].length;
- result.holes.push(holeIndex);
- }
- }
- return result;
- };
- earcut_1.default = _default;
- /**
- * Winding order defines the order of vertices for a triangle to be considered front-facing.
- *
- * @enum {Number}
- */
- const WindingOrder = {
- /**
- * Vertices are in clockwise order.
- *
- * @type {Number}
- * @constant
- */
- CLOCKWISE: WebGLConstants.WebGLConstants.CW,
- /**
- * Vertices are in counter-clockwise order.
- *
- * @type {Number}
- * @constant
- */
- COUNTER_CLOCKWISE: WebGLConstants.WebGLConstants.CCW,
- };
- /**
- * @private
- */
- WindingOrder.validate = function (windingOrder) {
- return (
- windingOrder === WindingOrder.CLOCKWISE ||
- windingOrder === WindingOrder.COUNTER_CLOCKWISE
- );
- };
- var WindingOrder$1 = Object.freeze(WindingOrder);
- const scaleToGeodeticHeightN = new Matrix2.Cartesian3();
- const scaleToGeodeticHeightP = new Matrix2.Cartesian3();
- /**
- * @private
- */
- const PolygonPipeline = {};
- /**
- * @exception {DeveloperError} At least three positions are required.
- */
- PolygonPipeline.computeArea2D = function (positions) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.defined("positions", positions);
- RuntimeError.Check.typeOf.number.greaterThanOrEquals(
- "positions.length",
- positions.length,
- 3
- );
- //>>includeEnd('debug');
- const length = positions.length;
- let area = 0.0;
- for (let i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
- const v0 = positions[i0];
- const v1 = positions[i1];
- area += v0.x * v1.y - v1.x * v0.y;
- }
- return area * 0.5;
- };
- /**
- * @returns {WindingOrder} The winding order.
- *
- * @exception {DeveloperError} At least three positions are required.
- */
- PolygonPipeline.computeWindingOrder2D = function (positions) {
- const area = PolygonPipeline.computeArea2D(positions);
- return area > 0.0 ? WindingOrder$1.COUNTER_CLOCKWISE : WindingOrder$1.CLOCKWISE;
- };
- /**
- * Triangulate a polygon.
- *
- * @param {Cartesian2[]} positions Cartesian2 array containing the vertices of the polygon
- * @param {Number[]} [holes] An array of the staring indices of the holes.
- * @returns {Number[]} Index array representing triangles that fill the polygon
- */
- PolygonPipeline.triangulate = function (positions, holes) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.defined("positions", positions);
- //>>includeEnd('debug');
- const flattenedPositions = Matrix2.Cartesian2.packArray(positions);
- return earcut_1(flattenedPositions, holes, 2);
- };
- const subdivisionV0Scratch = new Matrix2.Cartesian3();
- const subdivisionV1Scratch = new Matrix2.Cartesian3();
- const subdivisionV2Scratch = new Matrix2.Cartesian3();
- const subdivisionS0Scratch = new Matrix2.Cartesian3();
- const subdivisionS1Scratch = new Matrix2.Cartesian3();
- const subdivisionS2Scratch = new Matrix2.Cartesian3();
- const subdivisionMidScratch = new Matrix2.Cartesian3();
- /**
- * Subdivides positions and raises points to the surface of the ellipsoid.
- *
- * @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
- * @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
- * @param {Number[]} indices An array of indices that determines the triangles in the polygon.
- * @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
- *
- * @exception {DeveloperError} At least three indices are required.
- * @exception {DeveloperError} The number of indices must be divisable by three.
- * @exception {DeveloperError} Granularity must be greater than zero.
- */
- PolygonPipeline.computeSubdivision = function (
- ellipsoid,
- positions,
- indices,
- granularity
- ) {
- granularity = defaultValue.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
- RuntimeError.Check.defined("positions", positions);
- RuntimeError.Check.defined("indices", indices);
- RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
- RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
- RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
- //>>includeEnd('debug');
- // triangles that need (or might need) to be subdivided.
- const triangles = indices.slice(0);
- // New positions due to edge splits are appended to the positions list.
- let i;
- const length = positions.length;
- const subdividedPositions = new Array(length * 3);
- let q = 0;
- for (i = 0; i < length; i++) {
- const item = positions[i];
- subdividedPositions[q++] = item.x;
- subdividedPositions[q++] = item.y;
- subdividedPositions[q++] = item.z;
- }
- const subdividedIndices = [];
- // Used to make sure shared edges are not split more than once.
- const edges = {};
- const radius = ellipsoid.maximumRadius;
- const minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
- const minDistanceSqrd = minDistance * minDistance;
- while (triangles.length > 0) {
- const i2 = triangles.pop();
- const i1 = triangles.pop();
- const i0 = triangles.pop();
- const v0 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i0 * 3,
- subdivisionV0Scratch
- );
- const v1 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i1 * 3,
- subdivisionV1Scratch
- );
- const v2 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i2 * 3,
- subdivisionV2Scratch
- );
- const s0 = Matrix2.Cartesian3.multiplyByScalar(
- Matrix2.Cartesian3.normalize(v0, subdivisionS0Scratch),
- radius,
- subdivisionS0Scratch
- );
- const s1 = Matrix2.Cartesian3.multiplyByScalar(
- Matrix2.Cartesian3.normalize(v1, subdivisionS1Scratch),
- radius,
- subdivisionS1Scratch
- );
- const s2 = Matrix2.Cartesian3.multiplyByScalar(
- Matrix2.Cartesian3.normalize(v2, subdivisionS2Scratch),
- radius,
- subdivisionS2Scratch
- );
- const g0 = Matrix2.Cartesian3.magnitudeSquared(
- Matrix2.Cartesian3.subtract(s0, s1, subdivisionMidScratch)
- );
- const g1 = Matrix2.Cartesian3.magnitudeSquared(
- Matrix2.Cartesian3.subtract(s1, s2, subdivisionMidScratch)
- );
- const g2 = Matrix2.Cartesian3.magnitudeSquared(
- Matrix2.Cartesian3.subtract(s2, s0, subdivisionMidScratch)
- );
- const max = Math.max(g0, g1, g2);
- let edge;
- let mid;
- // if the max length squared of a triangle edge is greater than the chord length of squared
- // of the granularity, subdivide the triangle
- if (max > minDistanceSqrd) {
- if (g0 === max) {
- edge = `${Math.min(i0, i1)} ${Math.max(i0, i1)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = Matrix2.Cartesian3.add(v0, v1, subdivisionMidScratch);
- Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
- subdividedPositions.push(mid.x, mid.y, mid.z);
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i0, i, i2);
- triangles.push(i, i1, i2);
- } else if (g1 === max) {
- edge = `${Math.min(i1, i2)} ${Math.max(i1, i2)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = Matrix2.Cartesian3.add(v1, v2, subdivisionMidScratch);
- Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
- subdividedPositions.push(mid.x, mid.y, mid.z);
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i1, i, i0);
- triangles.push(i, i2, i0);
- } else if (g2 === max) {
- edge = `${Math.min(i2, i0)} ${Math.max(i2, i0)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = Matrix2.Cartesian3.add(v2, v0, subdivisionMidScratch);
- Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
- subdividedPositions.push(mid.x, mid.y, mid.z);
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i2, i, i1);
- triangles.push(i, i0, i1);
- }
- } else {
- subdividedIndices.push(i0);
- subdividedIndices.push(i1);
- subdividedIndices.push(i2);
- }
- }
- return new GeometryAttribute.Geometry({
- attributes: {
- position: new GeometryAttribute.GeometryAttribute({
- componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
- componentsPerAttribute: 3,
- values: subdividedPositions,
- }),
- },
- indices: subdividedIndices,
- primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
- });
- };
- const subdivisionC0Scratch = new Matrix2.Cartographic();
- const subdivisionC1Scratch = new Matrix2.Cartographic();
- const subdivisionC2Scratch = new Matrix2.Cartographic();
- const subdivisionCartographicScratch = new Matrix2.Cartographic();
- /**
- * Subdivides positions on rhumb lines and raises points to the surface of the ellipsoid.
- *
- * @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
- * @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
- * @param {Number[]} indices An array of indices that determines the triangles in the polygon.
- * @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
- *
- * @exception {DeveloperError} At least three indices are required.
- * @exception {DeveloperError} The number of indices must be divisable by three.
- * @exception {DeveloperError} Granularity must be greater than zero.
- */
- PolygonPipeline.computeRhumbLineSubdivision = function (
- ellipsoid,
- positions,
- indices,
- granularity
- ) {
- granularity = defaultValue.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
- RuntimeError.Check.defined("positions", positions);
- RuntimeError.Check.defined("indices", indices);
- RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
- RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
- RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
- //>>includeEnd('debug');
- // triangles that need (or might need) to be subdivided.
- const triangles = indices.slice(0);
- // New positions due to edge splits are appended to the positions list.
- let i;
- const length = positions.length;
- const subdividedPositions = new Array(length * 3);
- let q = 0;
- for (i = 0; i < length; i++) {
- const item = positions[i];
- subdividedPositions[q++] = item.x;
- subdividedPositions[q++] = item.y;
- subdividedPositions[q++] = item.z;
- }
- const subdividedIndices = [];
- // Used to make sure shared edges are not split more than once.
- const edges = {};
- const radius = ellipsoid.maximumRadius;
- const minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
- const rhumb0 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
- const rhumb1 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
- const rhumb2 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
- while (triangles.length > 0) {
- const i2 = triangles.pop();
- const i1 = triangles.pop();
- const i0 = triangles.pop();
- const v0 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i0 * 3,
- subdivisionV0Scratch
- );
- const v1 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i1 * 3,
- subdivisionV1Scratch
- );
- const v2 = Matrix2.Cartesian3.fromArray(
- subdividedPositions,
- i2 * 3,
- subdivisionV2Scratch
- );
- const c0 = ellipsoid.cartesianToCartographic(v0, subdivisionC0Scratch);
- const c1 = ellipsoid.cartesianToCartographic(v1, subdivisionC1Scratch);
- const c2 = ellipsoid.cartesianToCartographic(v2, subdivisionC2Scratch);
- rhumb0.setEndPoints(c0, c1);
- const g0 = rhumb0.surfaceDistance;
- rhumb1.setEndPoints(c1, c2);
- const g1 = rhumb1.surfaceDistance;
- rhumb2.setEndPoints(c2, c0);
- const g2 = rhumb2.surfaceDistance;
- const max = Math.max(g0, g1, g2);
- let edge;
- let mid;
- let midHeight;
- let midCartesian3;
- // if the max length squared of a triangle edge is greater than granularity, subdivide the triangle
- if (max > minDistance) {
- if (g0 === max) {
- edge = `${Math.min(i0, i1)} ${Math.max(i0, i1)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = rhumb0.interpolateUsingFraction(
- 0.5,
- subdivisionCartographicScratch
- );
- midHeight = (c0.height + c1.height) * 0.5;
- midCartesian3 = Matrix2.Cartesian3.fromRadians(
- mid.longitude,
- mid.latitude,
- midHeight,
- ellipsoid,
- subdivisionMidScratch
- );
- subdividedPositions.push(
- midCartesian3.x,
- midCartesian3.y,
- midCartesian3.z
- );
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i0, i, i2);
- triangles.push(i, i1, i2);
- } else if (g1 === max) {
- edge = `${Math.min(i1, i2)} ${Math.max(i1, i2)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = rhumb1.interpolateUsingFraction(
- 0.5,
- subdivisionCartographicScratch
- );
- midHeight = (c1.height + c2.height) * 0.5;
- midCartesian3 = Matrix2.Cartesian3.fromRadians(
- mid.longitude,
- mid.latitude,
- midHeight,
- ellipsoid,
- subdivisionMidScratch
- );
- subdividedPositions.push(
- midCartesian3.x,
- midCartesian3.y,
- midCartesian3.z
- );
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i1, i, i0);
- triangles.push(i, i2, i0);
- } else if (g2 === max) {
- edge = `${Math.min(i2, i0)} ${Math.max(i2, i0)}`;
- i = edges[edge];
- if (!defaultValue.defined(i)) {
- mid = rhumb2.interpolateUsingFraction(
- 0.5,
- subdivisionCartographicScratch
- );
- midHeight = (c2.height + c0.height) * 0.5;
- midCartesian3 = Matrix2.Cartesian3.fromRadians(
- mid.longitude,
- mid.latitude,
- midHeight,
- ellipsoid,
- subdivisionMidScratch
- );
- subdividedPositions.push(
- midCartesian3.x,
- midCartesian3.y,
- midCartesian3.z
- );
- i = subdividedPositions.length / 3 - 1;
- edges[edge] = i;
- }
- triangles.push(i2, i, i1);
- triangles.push(i, i0, i1);
- }
- } else {
- subdividedIndices.push(i0);
- subdividedIndices.push(i1);
- subdividedIndices.push(i2);
- }
- }
- return new GeometryAttribute.Geometry({
- attributes: {
- position: new GeometryAttribute.GeometryAttribute({
- componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
- componentsPerAttribute: 3,
- values: subdividedPositions,
- }),
- },
- indices: subdividedIndices,
- primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
- });
- };
- /**
- * Scales each position of a geometry's position attribute to a height, in place.
- *
- * @param {Number[]} positions The array of numbers representing the positions to be scaled
- * @param {Number} [height=0.0] The desired height to add to the positions
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
- * @param {Boolean} [scaleToSurface=true] <code>true</code> if the positions need to be scaled to the surface before the height is added.
- * @returns {Number[]} The input array of positions, scaled to height
- */
- PolygonPipeline.scaleToGeodeticHeight = function (
- positions,
- height,
- ellipsoid,
- scaleToSurface
- ) {
- ellipsoid = defaultValue.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
- let n = scaleToGeodeticHeightN;
- let p = scaleToGeodeticHeightP;
- height = defaultValue.defaultValue(height, 0.0);
- scaleToSurface = defaultValue.defaultValue(scaleToSurface, true);
- if (defaultValue.defined(positions)) {
- const length = positions.length;
- for (let i = 0; i < length; i += 3) {
- Matrix2.Cartesian3.fromArray(positions, i, p);
- if (scaleToSurface) {
- p = ellipsoid.scaleToGeodeticSurface(p, p);
- }
- if (height !== 0) {
- n = ellipsoid.geodeticSurfaceNormal(p, n);
- Matrix2.Cartesian3.multiplyByScalar(n, height, n);
- Matrix2.Cartesian3.add(p, n, p);
- }
- positions[i] = p.x;
- positions[i + 1] = p.y;
- positions[i + 2] = p.z;
- }
- }
- return positions;
- };
- exports.PolygonPipeline = PolygonPipeline;
- exports.WindingOrder = WindingOrder$1;
- }));
|