123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559 |
- import BoundingSphere from "./BoundingSphere.js";
- import Cartesian3 from "./Cartesian3.js";
- import Check from "./Check.js";
- import defaultValue from "./defaultValue.js";
- import defined from "./defined.js";
- import Ellipsoid from "./Ellipsoid.js";
- import Rectangle from "./Rectangle.js";
- /**
- * Determine whether or not other objects are visible or hidden behind the visible horizon defined by
- * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
- * origin of the coordinate system. This class uses the algorithm described in the
- * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
- *
- * @alias EllipsoidalOccluder
- *
- * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
- * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
- * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
- * testing visibility.
- *
- * @constructor
- *
- * @example
- * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
- * const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
- * const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
- *
- * @private
- */
- function EllipsoidalOccluder(ellipsoid, cameraPosition) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("ellipsoid", ellipsoid);
- //>>includeEnd('debug');
- this._ellipsoid = ellipsoid;
- this._cameraPosition = new Cartesian3();
- this._cameraPositionInScaledSpace = new Cartesian3();
- this._distanceToLimbInScaledSpaceSquared = 0.0;
- // cameraPosition fills in the above values
- if (defined(cameraPosition)) {
- this.cameraPosition = cameraPosition;
- }
- }
- Object.defineProperties(EllipsoidalOccluder.prototype, {
- /**
- * Gets the occluding ellipsoid.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Ellipsoid}
- */
- ellipsoid: {
- get: function () {
- return this._ellipsoid;
- },
- },
- /**
- * Gets or sets the position of the camera.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Cartesian3}
- */
- cameraPosition: {
- get: function () {
- return this._cameraPosition;
- },
- set: function (cameraPosition) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- const ellipsoid = this._ellipsoid;
- const cv = ellipsoid.transformPositionToScaledSpace(
- cameraPosition,
- this._cameraPositionInScaledSpace
- );
- const vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0;
- Cartesian3.clone(cameraPosition, this._cameraPosition);
- this._cameraPositionInScaledSpace = cv;
- this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
- },
- },
- });
- const scratchCartesian = new Cartesian3();
- /**
- * Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
- *
- * @param {Cartesian3} occludee The point to test for visibility.
- * @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * const point = new Cesium.Cartesian3(0, -3, -3);
- * occluder.isPointVisible(point); //returns true
- */
- EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
- const ellipsoid = this._ellipsoid;
- const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
- occludee,
- scratchCartesian
- );
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- this._cameraPositionInScaledSpace,
- this._distanceToLimbInScaledSpaceSquared
- );
- };
- /**
- * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
- * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
- * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
- *
- * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
- * @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * const point = new Cesium.Cartesian3(0, -3, -3);
- * const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
- * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
- */
- EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
- occludeeScaledSpacePosition
- ) {
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- this._cameraPositionInScaledSpace,
- this._distanceToLimbInScaledSpaceSquared
- );
- };
- const scratchCameraPositionInScaledSpaceShrunk = new Cartesian3();
- /**
- * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
- * ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. This is intended to be used with points generated by
- * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
- * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
- * @returns {boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- */
- EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function (
- occludeeScaledSpacePosition,
- minimumHeight
- ) {
- const ellipsoid = this._ellipsoid;
- let vhMagnitudeSquared;
- let cv;
- if (
- defined(minimumHeight) &&
- minimumHeight < 0.0 &&
- ellipsoid.minimumRadius > -minimumHeight
- ) {
- // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
- cv = scratchCameraPositionInScaledSpaceShrunk;
- cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
- cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
- cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
- vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
- } else {
- cv = this._cameraPositionInScaledSpace;
- vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
- }
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- cv,
- vhMagnitudeSquared
- );
- };
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
- directionToPoint,
- positions,
- result
- ) {
- return computeHorizonCullingPointFromPositions(
- this._ellipsoid,
- directionToPoint,
- positions,
- result
- );
- };
- const scratchEllipsoidShrunk = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
- /**
- * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
- * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
- * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function (
- directionToPoint,
- positions,
- minimumHeight,
- result
- ) {
- const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
- this._ellipsoid,
- minimumHeight,
- scratchEllipsoidShrunk
- );
- return computeHorizonCullingPointFromPositions(
- possiblyShrunkEllipsoid,
- directionToPoint,
- positions,
- result
- );
- };
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {number[]} vertices The vertices from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {number} [stride=3]
- * @param {Cartesian3} [center=Cartesian3.ZERO]
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function (
- directionToPoint,
- vertices,
- stride,
- center,
- result
- ) {
- return computeHorizonCullingPointFromVertices(
- this._ellipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- );
- };
- /**
- * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
- * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
- * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {number[]} vertices The vertices from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {number} [stride=3]
- * @param {Cartesian3} [center=Cartesian3.ZERO]
- * @param {number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function (
- directionToPoint,
- vertices,
- stride,
- center,
- minimumHeight,
- result
- ) {
- const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
- this._ellipsoid,
- minimumHeight,
- scratchEllipsoidShrunk
- );
- return computeHorizonCullingPointFromVertices(
- possiblyShrunkEllipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- );
- };
- const subsampleScratch = [];
- /**
- * Computes a point that can be used for horizon culling of a rectangle. If the point is below
- * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
- * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
- * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
- * the ellipsoid used by this instance for occlusion testing.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function (
- rectangle,
- ellipsoid,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("rectangle", rectangle);
- //>>includeEnd('debug');
- const positions = Rectangle.subsample(
- rectangle,
- ellipsoid,
- 0.0,
- subsampleScratch
- );
- const bs = BoundingSphere.fromPoints(positions);
- // If the bounding sphere center is too close to the center of the occluder, it doesn't make
- // sense to try to horizon cull it.
- if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
- return undefined;
- }
- return this.computeHorizonCullingPoint(bs.center, positions, result);
- };
- const scratchEllipsoidShrunkRadii = new Cartesian3();
- function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
- if (
- defined(minimumHeight) &&
- minimumHeight < 0.0 &&
- ellipsoid.minimumRadius > -minimumHeight
- ) {
- const ellipsoidShrunkRadii = Cartesian3.fromElements(
- ellipsoid.radii.x + minimumHeight,
- ellipsoid.radii.y + minimumHeight,
- ellipsoid.radii.z + minimumHeight,
- scratchEllipsoidShrunkRadii
- );
- ellipsoid = Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
- }
- return ellipsoid;
- }
- function computeHorizonCullingPointFromPositions(
- ellipsoid,
- directionToPoint,
- positions,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("directionToPoint", directionToPoint);
- Check.defined("positions", positions);
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian3();
- }
- const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
- ellipsoid,
- directionToPoint
- );
- let resultMagnitude = 0.0;
- for (let i = 0, len = positions.length; i < len; ++i) {
- const position = positions[i];
- const candidateMagnitude = computeMagnitude(
- ellipsoid,
- position,
- scaledSpaceDirectionToPoint
- );
- if (candidateMagnitude < 0.0) {
- // all points should face the same direction, but this one doesn't, so return undefined
- return undefined;
- }
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- }
- const positionScratch = new Cartesian3();
- function computeHorizonCullingPointFromVertices(
- ellipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("directionToPoint", directionToPoint);
- Check.defined("vertices", vertices);
- Check.typeOf.number("stride", stride);
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian3();
- }
- stride = defaultValue(stride, 3);
- center = defaultValue(center, Cartesian3.ZERO);
- const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
- ellipsoid,
- directionToPoint
- );
- let resultMagnitude = 0.0;
- for (let i = 0, len = vertices.length; i < len; i += stride) {
- positionScratch.x = vertices[i] + center.x;
- positionScratch.y = vertices[i + 1] + center.y;
- positionScratch.z = vertices[i + 2] + center.z;
- const candidateMagnitude = computeMagnitude(
- ellipsoid,
- positionScratch,
- scaledSpaceDirectionToPoint
- );
- if (candidateMagnitude < 0.0) {
- // all points should face the same direction, but this one doesn't, so return undefined
- return undefined;
- }
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- }
- function isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- cameraPositionInScaledSpace,
- distanceToLimbInScaledSpaceSquared
- ) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- const cv = cameraPositionInScaledSpace;
- const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
- const vt = Cartesian3.subtract(
- occludeeScaledSpacePosition,
- cv,
- scratchCartesian
- );
- const vtDotVc = -Cartesian3.dot(vt, cv);
- // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
- // in this case, set the culling plane to be on V.
- const isOccluded =
- vhMagnitudeSquared < 0
- ? vtDotVc > 0
- : vtDotVc > vhMagnitudeSquared &&
- (vtDotVc * vtDotVc) / Cartesian3.magnitudeSquared(vt) >
- vhMagnitudeSquared;
- return !isOccluded;
- }
- const scaledSpaceScratch = new Cartesian3();
- const directionScratch = new Cartesian3();
- function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
- const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
- position,
- scaledSpaceScratch
- );
- let magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition);
- let magnitude = Math.sqrt(magnitudeSquared);
- const direction = Cartesian3.divideByScalar(
- scaledSpacePosition,
- magnitude,
- directionScratch
- );
- // For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
- magnitudeSquared = Math.max(1.0, magnitudeSquared);
- magnitude = Math.max(1.0, magnitude);
- const cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
- const sinAlpha = Cartesian3.magnitude(
- Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)
- );
- const cosBeta = 1.0 / magnitude;
- const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
- return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
- }
- function magnitudeToPoint(
- scaledSpaceDirectionToPoint,
- resultMagnitude,
- result
- ) {
- // The horizon culling point is undefined if there were no positions from which to compute it,
- // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
- if (
- resultMagnitude <= 0.0 ||
- resultMagnitude === 1.0 / 0.0 ||
- resultMagnitude !== resultMagnitude
- ) {
- return undefined;
- }
- return Cartesian3.multiplyByScalar(
- scaledSpaceDirectionToPoint,
- resultMagnitude,
- result
- );
- }
- const directionToPointScratch = new Cartesian3();
- function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
- if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) {
- return directionToPoint;
- }
- ellipsoid.transformPositionToScaledSpace(
- directionToPoint,
- directionToPointScratch
- );
- return Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
- }
- export default EllipsoidalOccluder;
|