123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- import Cartesian3 from "./Cartesian3.js";
- import defined from "./defined.js";
- import DeveloperError from "./DeveloperError.js";
- /**
- * Uses the Tridiagonal Matrix Algorithm, also known as the Thomas Algorithm, to solve
- * a system of linear equations where the coefficient matrix is a tridiagonal matrix.
- *
- * @namespace TridiagonalSystemSolver
- */
- const TridiagonalSystemSolver = {};
- /**
- * Solves a tridiagonal system of linear equations.
- *
- * @param {number[]} diagonal An array with length <code>n</code> that contains the diagonal of the coefficient matrix.
- * @param {number[]} lower An array with length <code>n - 1</code> that contains the lower diagonal of the coefficient matrix.
- * @param {number[]} upper An array with length <code>n - 1</code> that contains the upper diagonal of the coefficient matrix.
- * @param {Cartesian3[]} right An array of Cartesians with length <code>n</code> that is the right side of the system of equations.
- *
- * @exception {DeveloperError} diagonal and right must have the same lengths.
- * @exception {DeveloperError} lower and upper must have the same lengths.
- * @exception {DeveloperError} lower and upper must be one less than the length of diagonal.
- *
- * @performance Linear time.
- *
- * @example
- * const lowerDiagonal = [1.0, 1.0, 1.0, 1.0];
- * const diagonal = [2.0, 4.0, 4.0, 4.0, 2.0];
- * const upperDiagonal = [1.0, 1.0, 1.0, 1.0];
- * const rightHandSide = [
- * new Cesium.Cartesian3(410757.0, -1595711.0, 1375302.0),
- * new Cesium.Cartesian3(-5986705.0, -2190640.0, 1099600.0),
- * new Cesium.Cartesian3(-12593180.0, 288588.0, -1755549.0),
- * new Cesium.Cartesian3(-5349898.0, 2457005.0, -2685438.0),
- * new Cesium.Cartesian3(845820.0, 1573488.0, -1205591.0)
- * ];
- *
- * const solution = Cesium.TridiagonalSystemSolver.solve(lowerDiagonal, diagonal, upperDiagonal, rightHandSide);
- *
- * @returns {Cartesian3[]} An array of Cartesians with length <code>n</code> that is the solution to the tridiagonal system of equations.
- */
- TridiagonalSystemSolver.solve = function (lower, diagonal, upper, right) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(lower) || !(lower instanceof Array)) {
- throw new DeveloperError("The array lower is required.");
- }
- if (!defined(diagonal) || !(diagonal instanceof Array)) {
- throw new DeveloperError("The array diagonal is required.");
- }
- if (!defined(upper) || !(upper instanceof Array)) {
- throw new DeveloperError("The array upper is required.");
- }
- if (!defined(right) || !(right instanceof Array)) {
- throw new DeveloperError("The array right is required.");
- }
- if (diagonal.length !== right.length) {
- throw new DeveloperError("diagonal and right must have the same lengths.");
- }
- if (lower.length !== upper.length) {
- throw new DeveloperError("lower and upper must have the same lengths.");
- } else if (lower.length !== diagonal.length - 1) {
- throw new DeveloperError(
- "lower and upper must be one less than the length of diagonal."
- );
- }
- //>>includeEnd('debug');
- const c = new Array(upper.length);
- const d = new Array(right.length);
- const x = new Array(right.length);
- let i;
- for (i = 0; i < d.length; i++) {
- d[i] = new Cartesian3();
- x[i] = new Cartesian3();
- }
- c[0] = upper[0] / diagonal[0];
- d[0] = Cartesian3.multiplyByScalar(right[0], 1.0 / diagonal[0], d[0]);
- let scalar;
- for (i = 1; i < c.length; ++i) {
- scalar = 1.0 / (diagonal[i] - c[i - 1] * lower[i - 1]);
- c[i] = upper[i] * scalar;
- d[i] = Cartesian3.subtract(
- right[i],
- Cartesian3.multiplyByScalar(d[i - 1], lower[i - 1], d[i]),
- d[i]
- );
- d[i] = Cartesian3.multiplyByScalar(d[i], scalar, d[i]);
- }
- scalar = 1.0 / (diagonal[i] - c[i - 1] * lower[i - 1]);
- d[i] = Cartesian3.subtract(
- right[i],
- Cartesian3.multiplyByScalar(d[i - 1], lower[i - 1], d[i]),
- d[i]
- );
- d[i] = Cartesian3.multiplyByScalar(d[i], scalar, d[i]);
- x[x.length - 1] = d[d.length - 1];
- for (i = x.length - 2; i >= 0; --i) {
- x[i] = Cartesian3.subtract(
- d[i],
- Cartesian3.multiplyByScalar(x[i + 1], c[i], x[i]),
- x[i]
- );
- }
- return x;
- };
- export default TridiagonalSystemSolver;
|