123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import msfnz from '../common/msfnz';
- import qsfnz from '../common/qsfnz';
- import adjust_lon from '../common/adjust_lon';
- import asinz from '../common/asinz';
- import {EPSLN} from '../constants/values';
- export function init() {
- if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
- return;
- }
- this.temp = this.b / this.a;
- this.es = 1 - Math.pow(this.temp, 2);
- this.e3 = Math.sqrt(this.es);
- this.sin_po = Math.sin(this.lat1);
- this.cos_po = Math.cos(this.lat1);
- this.t1 = this.sin_po;
- this.con = this.sin_po;
- this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
- this.qs1 = qsfnz(this.e3, this.sin_po);
- this.sin_po = Math.sin(this.lat2);
- this.cos_po = Math.cos(this.lat2);
- this.t2 = this.sin_po;
- this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
- this.qs2 = qsfnz(this.e3, this.sin_po);
- this.sin_po = Math.sin(this.lat0);
- this.cos_po = Math.cos(this.lat0);
- this.t3 = this.sin_po;
- this.qs0 = qsfnz(this.e3, this.sin_po);
- if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
- this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
- }
- else {
- this.ns0 = this.con;
- }
- this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
- this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
- }
- /* Albers Conical Equal Area forward equations--mapping lat,long to x,y
- -------------------------------------------------------------------*/
- export function forward(p) {
- var lon = p.x;
- var lat = p.y;
- this.sin_phi = Math.sin(lat);
- this.cos_phi = Math.cos(lat);
- var qs = qsfnz(this.e3, this.sin_phi);
- var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
- var theta = this.ns0 * adjust_lon(lon - this.long0);
- var x = rh1 * Math.sin(theta) + this.x0;
- var y = this.rh - rh1 * Math.cos(theta) + this.y0;
- p.x = x;
- p.y = y;
- return p;
- }
- export function inverse(p) {
- var rh1, qs, con, theta, lon, lat;
- p.x -= this.x0;
- p.y = this.rh - p.y + this.y0;
- if (this.ns0 >= 0) {
- rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
- con = 1;
- }
- else {
- rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
- con = -1;
- }
- theta = 0;
- if (rh1 !== 0) {
- theta = Math.atan2(con * p.x, con * p.y);
- }
- con = rh1 * this.ns0 / this.a;
- if (this.sphere) {
- lat = Math.asin((this.c - con * con) / (2 * this.ns0));
- }
- else {
- qs = (this.c - con * con) / this.ns0;
- lat = this.phi1z(this.e3, qs);
- }
- lon = adjust_lon(theta / this.ns0 + this.long0);
- p.x = lon;
- p.y = lat;
- return p;
- }
- /* Function to compute phi1, the latitude for the inverse of the
- Albers Conical Equal-Area projection.
- -------------------------------------------*/
- export function phi1z(eccent, qs) {
- var sinphi, cosphi, con, com, dphi;
- var phi = asinz(0.5 * qs);
- if (eccent < EPSLN) {
- return phi;
- }
- var eccnts = eccent * eccent;
- for (var i = 1; i <= 25; i++) {
- sinphi = Math.sin(phi);
- cosphi = Math.cos(phi);
- con = eccent * sinphi;
- com = 1 - con * con;
- dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
- phi = phi + dphi;
- if (Math.abs(dphi) <= 1e-7) {
- return phi;
- }
- }
- return null;
- }
- export var names = ["Albers_Conic_Equal_Area", "Albers", "aea"];
- export default {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names,
- phi1z: phi1z
- };
|