123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import adjust_lon from '../common/adjust_lon';
- import asinz from '../common/asinz';
- import {EPSLN} from '../constants/values';
- /*
- reference:
- Wolfram Mathworld "Gnomonic Projection"
- http://mathworld.wolfram.com/GnomonicProjection.html
- Accessed: 12th November 2009
- */
- export function init() {
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- this.sin_p14 = Math.sin(this.lat0);
- this.cos_p14 = Math.cos(this.lat0);
- // Approximation for projecting points to the horizon (infinity)
- this.infinity_dist = 1000 * this.a;
- this.rc = 1;
- }
- /* Gnomonic forward equations--mapping lat,long to x,y
- ---------------------------------------------------*/
- export function forward(p) {
- var sinphi, cosphi; /* sin and cos value */
- var dlon; /* delta longitude value */
- var coslon; /* cos of longitude */
- var ksp; /* scale factor */
- var g;
- var x, y;
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- dlon = adjust_lon(lon - this.long0);
- sinphi = Math.sin(lat);
- cosphi = Math.cos(lat);
- coslon = Math.cos(dlon);
- g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
- ksp = 1;
- if ((g > 0) || (Math.abs(g) <= EPSLN)) {
- x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
- y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
- }
- else {
- // Point is in the opposing hemisphere and is unprojectable
- // We still need to return a reasonable point, so we project
- // to infinity, on a bearing
- // equivalent to the northern hemisphere equivalent
- // This is a reasonable approximation for short shapes and lines that
- // straddle the horizon.
- x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
- y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
- }
- p.x = x;
- p.y = y;
- return p;
- }
- export function inverse(p) {
- var rh; /* Rho */
- var sinc, cosc;
- var c;
- var lon, lat;
- /* Inverse equations
- -----------------*/
- p.x = (p.x - this.x0) / this.a;
- p.y = (p.y - this.y0) / this.a;
- p.x /= this.k0;
- p.y /= this.k0;
- if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
- c = Math.atan2(rh, this.rc);
- sinc = Math.sin(c);
- cosc = Math.cos(c);
- lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
- lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
- lon = adjust_lon(this.long0 + lon);
- }
- else {
- lat = this.phic0;
- lon = 0;
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- export var names = ["gnom"];
- export default {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names
- };
|