123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- import {HALF_PI, EPSLN, FORTPI} from '../constants/values';
- import qsfnz from '../common/qsfnz';
- import adjust_lon from '../common/adjust_lon';
- /*
- reference
- "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
- The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
- */
- export var S_POLE = 1;
- export var N_POLE = 2;
- export var EQUIT = 3;
- export var OBLIQ = 4;
- /* Initialize the Lambert Azimuthal Equal Area projection
- ------------------------------------------------------*/
- export function init() {
- var t = Math.abs(this.lat0);
- if (Math.abs(t - HALF_PI) < EPSLN) {
- this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
- }
- else if (Math.abs(t) < EPSLN) {
- this.mode = this.EQUIT;
- }
- else {
- this.mode = this.OBLIQ;
- }
- if (this.es > 0) {
- var sinphi;
- this.qp = qsfnz(this.e, 1);
- this.mmf = 0.5 / (1 - this.es);
- this.apa = authset(this.es);
- switch (this.mode) {
- case this.N_POLE:
- this.dd = 1;
- break;
- case this.S_POLE:
- this.dd = 1;
- break;
- case this.EQUIT:
- this.rq = Math.sqrt(0.5 * this.qp);
- this.dd = 1 / this.rq;
- this.xmf = 1;
- this.ymf = 0.5 * this.qp;
- break;
- case this.OBLIQ:
- this.rq = Math.sqrt(0.5 * this.qp);
- sinphi = Math.sin(this.lat0);
- this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
- this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
- this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
- this.ymf = (this.xmf = this.rq) / this.dd;
- this.xmf *= this.dd;
- break;
- }
- }
- else {
- if (this.mode === this.OBLIQ) {
- this.sinph0 = Math.sin(this.lat0);
- this.cosph0 = Math.cos(this.lat0);
- }
- }
- }
- /* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
- -----------------------------------------------------------------------*/
- export function forward(p) {
- /* Forward equations
- -----------------*/
- var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
- var lam = p.x;
- var phi = p.y;
- lam = adjust_lon(lam - this.long0);
- if (this.sphere) {
- sinphi = Math.sin(phi);
- cosphi = Math.cos(phi);
- coslam = Math.cos(lam);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
- if (y <= EPSLN) {
- return null;
- }
- y = Math.sqrt(2 / y);
- x = y * cosphi * Math.sin(lam);
- y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
- }
- else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
- if (this.mode === this.N_POLE) {
- coslam = -coslam;
- }
- if (Math.abs(phi + this.lat0) < EPSLN) {
- return null;
- }
- y = FORTPI - phi * 0.5;
- y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
- x = y * Math.sin(lam);
- y *= coslam;
- }
- }
- else {
- sinb = 0;
- cosb = 0;
- b = 0;
- coslam = Math.cos(lam);
- sinlam = Math.sin(lam);
- sinphi = Math.sin(phi);
- q = qsfnz(this.e, sinphi);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- sinb = q / this.qp;
- cosb = Math.sqrt(1 - sinb * sinb);
- }
- switch (this.mode) {
- case this.OBLIQ:
- b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
- break;
- case this.EQUIT:
- b = 1 + cosb * coslam;
- break;
- case this.N_POLE:
- b = HALF_PI + phi;
- q = this.qp - q;
- break;
- case this.S_POLE:
- b = phi - HALF_PI;
- q = this.qp + q;
- break;
- }
- if (Math.abs(b) < EPSLN) {
- return null;
- }
- switch (this.mode) {
- case this.OBLIQ:
- case this.EQUIT:
- b = Math.sqrt(2 / b);
- if (this.mode === this.OBLIQ) {
- y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
- }
- else {
- y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
- }
- x = this.xmf * b * cosb * sinlam;
- break;
- case this.N_POLE:
- case this.S_POLE:
- if (q >= 0) {
- x = (b = Math.sqrt(q)) * sinlam;
- y = coslam * ((this.mode === this.S_POLE) ? b : -b);
- }
- else {
- x = y = 0;
- }
- break;
- }
- }
- p.x = this.a * x + this.x0;
- p.y = this.a * y + this.y0;
- return p;
- }
- /* Inverse equations
- -----------------*/
- export function inverse(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var x = p.x / this.a;
- var y = p.y / this.a;
- var lam, phi, cCe, sCe, q, rho, ab;
- if (this.sphere) {
- var cosz = 0,
- rh, sinz = 0;
- rh = Math.sqrt(x * x + y * y);
- phi = rh * 0.5;
- if (phi > 1) {
- return null;
- }
- phi = 2 * Math.asin(phi);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- sinz = Math.sin(phi);
- cosz = Math.cos(phi);
- }
- switch (this.mode) {
- case this.EQUIT:
- phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
- x *= sinz;
- y = cosz * rh;
- break;
- case this.OBLIQ:
- phi = (Math.abs(rh) <= EPSLN) ? this.lat0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
- x *= sinz * this.cosph0;
- y = (cosz - Math.sin(phi) * this.sinph0) * rh;
- break;
- case this.N_POLE:
- y = -y;
- phi = HALF_PI - phi;
- break;
- case this.S_POLE:
- phi -= HALF_PI;
- break;
- }
- lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
- }
- else {
- ab = 0;
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- x /= this.dd;
- y *= this.dd;
- rho = Math.sqrt(x * x + y * y);
- if (rho < EPSLN) {
- p.x = this.long0;
- p.y = this.lat0;
- return p;
- }
- sCe = 2 * Math.asin(0.5 * rho / this.rq);
- cCe = Math.cos(sCe);
- x *= (sCe = Math.sin(sCe));
- if (this.mode === this.OBLIQ) {
- ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
- q = this.qp * ab;
- y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
- }
- else {
- ab = y * sCe / rho;
- q = this.qp * ab;
- y = rho * cCe;
- }
- }
- else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
- if (this.mode === this.N_POLE) {
- y = -y;
- }
- q = (x * x + y * y);
- if (!q) {
- p.x = this.long0;
- p.y = this.lat0;
- return p;
- }
- ab = 1 - q / this.qp;
- if (this.mode === this.S_POLE) {
- ab = -ab;
- }
- }
- lam = Math.atan2(x, y);
- phi = authlat(Math.asin(ab), this.apa);
- }
- p.x = adjust_lon(this.long0 + lam);
- p.y = phi;
- return p;
- }
- /* determine latitude from authalic latitude */
- var P00 = 0.33333333333333333333;
- var P01 = 0.17222222222222222222;
- var P02 = 0.10257936507936507936;
- var P10 = 0.06388888888888888888;
- var P11 = 0.06640211640211640211;
- var P20 = 0.01641501294219154443;
- function authset(es) {
- var t;
- var APA = [];
- APA[0] = es * P00;
- t = es * es;
- APA[0] += t * P01;
- APA[1] = t * P10;
- t *= es;
- APA[0] += t * P02;
- APA[1] += t * P11;
- APA[2] = t * P20;
- return APA;
- }
- function authlat(beta, APA) {
- var t = beta + beta;
- return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
- }
- export var names = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
- export default {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names,
- S_POLE: S_POLE,
- N_POLE: N_POLE,
- EQUIT: EQUIT,
- OBLIQ: OBLIQ
- };
|