123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- // QSC projection rewritten from the original PROJ4
- // https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c
- import {EPSLN, TWO_PI, SPI, HALF_PI, FORTPI} from '../constants/values';
- /* constants */
- var FACE_ENUM = {
- FRONT: 1,
- RIGHT: 2,
- BACK: 3,
- LEFT: 4,
- TOP: 5,
- BOTTOM: 6
- };
- var AREA_ENUM = {
- AREA_0: 1,
- AREA_1: 2,
- AREA_2: 3,
- AREA_3: 4
- };
- export function init() {
- this.x0 = this.x0 || 0;
- this.y0 = this.y0 || 0;
- this.lat0 = this.lat0 || 0;
- this.long0 = this.long0 || 0;
- this.lat_ts = this.lat_ts || 0;
- this.title = this.title || "Quadrilateralized Spherical Cube";
- /* Determine the cube face from the center of projection. */
- if (this.lat0 >= HALF_PI - FORTPI / 2.0) {
- this.face = FACE_ENUM.TOP;
- } else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) {
- this.face = FACE_ENUM.BOTTOM;
- } else if (Math.abs(this.long0) <= FORTPI) {
- this.face = FACE_ENUM.FRONT;
- } else if (Math.abs(this.long0) <= HALF_PI + FORTPI) {
- this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT;
- } else {
- this.face = FACE_ENUM.BACK;
- }
- /* Fill in useful values for the ellipsoid <-> sphere shift
- * described in [LK12]. */
- if (this.es !== 0) {
- this.one_minus_f = 1 - (this.a - this.b) / this.a;
- this.one_minus_f_squared = this.one_minus_f * this.one_minus_f;
- }
- }
- // QSC forward equations--mapping lat,long to x,y
- // -----------------------------------------------------------------
- export function forward(p) {
- var xy = {x: 0, y: 0};
- var lat, lon;
- var theta, phi;
- var t, mu;
- /* nu; */
- var area = {value: 0};
- // move lon according to projection's lon
- p.x -= this.long0;
- /* Convert the geodetic latitude to a geocentric latitude.
- * This corresponds to the shift from the ellipsoid to the sphere
- * described in [LK12]. */
- if (this.es !== 0) {//if (P->es != 0) {
- lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y));
- } else {
- lat = p.y;
- }
- /* Convert the input lat, lon into theta, phi as used by QSC.
- * This depends on the cube face and the area on it.
- * For the top and bottom face, we can compute theta and phi
- * directly from phi, lam. For the other faces, we must use
- * unit sphere cartesian coordinates as an intermediate step. */
- lon = p.x; //lon = lp.lam;
- if (this.face === FACE_ENUM.TOP) {
- phi = HALF_PI - lat;
- if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- theta = lon - HALF_PI;
- } else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_1;
- theta = (lon > 0.0 ? lon - SPI : lon + SPI);
- } else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) {
- area.value = AREA_ENUM.AREA_2;
- theta = lon + HALF_PI;
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta = lon;
- }
- } else if (this.face === FACE_ENUM.BOTTOM) {
- phi = HALF_PI + lat;
- if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- theta = -lon + HALF_PI;
- } else if (lon < FORTPI && lon >= -FORTPI) {
- area.value = AREA_ENUM.AREA_1;
- theta = -lon;
- } else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_2;
- theta = -lon - HALF_PI;
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta = (lon > 0.0 ? -lon + SPI : -lon - SPI);
- }
- } else {
- var q, r, s;
- var sinlat, coslat;
- var sinlon, coslon;
- if (this.face === FACE_ENUM.RIGHT) {
- lon = qsc_shift_lon_origin(lon, +HALF_PI);
- } else if (this.face === FACE_ENUM.BACK) {
- lon = qsc_shift_lon_origin(lon, +SPI);
- } else if (this.face === FACE_ENUM.LEFT) {
- lon = qsc_shift_lon_origin(lon, -HALF_PI);
- }
- sinlat = Math.sin(lat);
- coslat = Math.cos(lat);
- sinlon = Math.sin(lon);
- coslon = Math.cos(lon);
- q = coslat * coslon;
- r = coslat * sinlon;
- s = sinlat;
- if (this.face === FACE_ENUM.FRONT) {
- phi = Math.acos(q);
- theta = qsc_fwd_equat_face_theta(phi, s, r, area);
- } else if (this.face === FACE_ENUM.RIGHT) {
- phi = Math.acos(r);
- theta = qsc_fwd_equat_face_theta(phi, s, -q, area);
- } else if (this.face === FACE_ENUM.BACK) {
- phi = Math.acos(-q);
- theta = qsc_fwd_equat_face_theta(phi, s, -r, area);
- } else if (this.face === FACE_ENUM.LEFT) {
- phi = Math.acos(-r);
- theta = qsc_fwd_equat_face_theta(phi, s, q, area);
- } else {
- /* Impossible */
- phi = theta = 0;
- area.value = AREA_ENUM.AREA_0;
- }
- }
- /* Compute mu and nu for the area of definition.
- * For mu, see Eq. (3-21) in [OL76], but note the typos:
- * compare with Eq. (3-14). For nu, see Eq. (3-38). */
- mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI));
- t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta)))));
- /* Apply the result to the real area. */
- if (area.value === AREA_ENUM.AREA_1) {
- mu += HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_2) {
- mu += SPI;
- } else if (area.value === AREA_ENUM.AREA_3) {
- mu += 1.5 * SPI;
- }
- /* Now compute x, y from mu and nu */
- xy.x = t * Math.cos(mu);
- xy.y = t * Math.sin(mu);
- xy.x = xy.x * this.a + this.x0;
- xy.y = xy.y * this.a + this.y0;
- p.x = xy.x;
- p.y = xy.y;
- return p;
- }
- // QSC inverse equations--mapping x,y to lat/long
- // -----------------------------------------------------------------
- export function inverse(p) {
- var lp = {lam: 0, phi: 0};
- var mu, nu, cosmu, tannu;
- var tantheta, theta, cosphi, phi;
- var t;
- var area = {value: 0};
- /* de-offset */
- p.x = (p.x - this.x0) / this.a;
- p.y = (p.y - this.y0) / this.a;
- /* Convert the input x, y to the mu and nu angles as used by QSC.
- * This depends on the area of the cube face. */
- nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y));
- mu = Math.atan2(p.y, p.x);
- if (p.x >= 0.0 && p.x >= Math.abs(p.y)) {
- area.value = AREA_ENUM.AREA_0;
- } else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) {
- area.value = AREA_ENUM.AREA_1;
- mu -= HALF_PI;
- } else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) {
- area.value = AREA_ENUM.AREA_2;
- mu = (mu < 0.0 ? mu + SPI : mu - SPI);
- } else {
- area.value = AREA_ENUM.AREA_3;
- mu += HALF_PI;
- }
- /* Compute phi and theta for the area of definition.
- * The inverse projection is not described in the original paper, but some
- * good hints can be found here (as of 2011-12-14):
- * http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
- * (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
- t = (SPI / 12) * Math.tan(mu);
- tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2)));
- theta = Math.atan(tantheta);
- cosmu = Math.cos(mu);
- tannu = Math.tan(nu);
- cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta))));
- if (cosphi < -1) {
- cosphi = -1;
- } else if (cosphi > +1) {
- cosphi = +1;
- }
- /* Apply the result to the real area on the cube face.
- * For the top and bottom face, we can compute phi and lam directly.
- * For the other faces, we must use unit sphere cartesian coordinates
- * as an intermediate step. */
- if (this.face === FACE_ENUM.TOP) {
- phi = Math.acos(cosphi);
- lp.phi = HALF_PI - phi;
- if (area.value === AREA_ENUM.AREA_0) {
- lp.lam = theta + HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_1) {
- lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI);
- } else if (area.value === AREA_ENUM.AREA_2) {
- lp.lam = theta - HALF_PI;
- } else /* area.value == AREA_ENUM.AREA_3 */ {
- lp.lam = theta;
- }
- } else if (this.face === FACE_ENUM.BOTTOM) {
- phi = Math.acos(cosphi);
- lp.phi = phi - HALF_PI;
- if (area.value === AREA_ENUM.AREA_0) {
- lp.lam = -theta + HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_1) {
- lp.lam = -theta;
- } else if (area.value === AREA_ENUM.AREA_2) {
- lp.lam = -theta - HALF_PI;
- } else /* area.value == AREA_ENUM.AREA_3 */ {
- lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI);
- }
- } else {
- /* Compute phi and lam via cartesian unit sphere coordinates. */
- var q, r, s;
- q = cosphi;
- t = q * q;
- if (t >= 1) {
- s = 0;
- } else {
- s = Math.sqrt(1 - t) * Math.sin(theta);
- }
- t += s * s;
- if (t >= 1) {
- r = 0;
- } else {
- r = Math.sqrt(1 - t);
- }
- /* Rotate q,r,s into the correct area. */
- if (area.value === AREA_ENUM.AREA_1) {
- t = r;
- r = -s;
- s = t;
- } else if (area.value === AREA_ENUM.AREA_2) {
- r = -r;
- s = -s;
- } else if (area.value === AREA_ENUM.AREA_3) {
- t = r;
- r = s;
- s = -t;
- }
- /* Rotate q,r,s into the correct cube face. */
- if (this.face === FACE_ENUM.RIGHT) {
- t = q;
- q = -r;
- r = t;
- } else if (this.face === FACE_ENUM.BACK) {
- q = -q;
- r = -r;
- } else if (this.face === FACE_ENUM.LEFT) {
- t = q;
- q = r;
- r = -t;
- }
- /* Now compute phi and lam from the unit sphere coordinates. */
- lp.phi = Math.acos(-s) - HALF_PI;
- lp.lam = Math.atan2(r, q);
- if (this.face === FACE_ENUM.RIGHT) {
- lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI);
- } else if (this.face === FACE_ENUM.BACK) {
- lp.lam = qsc_shift_lon_origin(lp.lam, -SPI);
- } else if (this.face === FACE_ENUM.LEFT) {
- lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI);
- }
- }
- /* Apply the shift from the sphere to the ellipsoid as described
- * in [LK12]. */
- if (this.es !== 0) {
- var invert_sign;
- var tanphi, xa;
- invert_sign = (lp.phi < 0 ? 1 : 0);
- tanphi = Math.tan(lp.phi);
- xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared);
- lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa));
- if (invert_sign) {
- lp.phi = -lp.phi;
- }
- }
- lp.lam += this.long0;
- p.x = lp.lam;
- p.y = lp.phi;
- return p;
- }
- /* Helper function for forward projection: compute the theta angle
- * and determine the area number. */
- function qsc_fwd_equat_face_theta(phi, y, x, area) {
- var theta;
- if (phi < EPSLN) {
- area.value = AREA_ENUM.AREA_0;
- theta = 0.0;
- } else {
- theta = Math.atan2(y, x);
- if (Math.abs(theta) <= FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- } else if (theta > FORTPI && theta <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_1;
- theta -= HALF_PI;
- } else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_2;
- theta = (theta >= 0.0 ? theta - SPI : theta + SPI);
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta += HALF_PI;
- }
- }
- return theta;
- }
- /* Helper function: shift the longitude. */
- function qsc_shift_lon_origin(lon, offset) {
- var slon = lon + offset;
- if (slon < -SPI) {
- slon += TWO_PI;
- } else if (slon > +SPI) {
- slon -= TWO_PI;
- }
- return slon;
- }
- export var names = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"];
- export default {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names
- };
|