1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- /*
- references:
- Formules et constantes pour le Calcul pour la
- projection cylindrique conforme à axe oblique et pour la transformation entre
- des systèmes de référence.
- http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
- */
- export function init() {
- var phy0 = this.lat0;
- this.lambda0 = this.long0;
- var sinPhy0 = Math.sin(phy0);
- var semiMajorAxis = this.a;
- var invF = this.rf;
- var flattening = 1 / invF;
- var e2 = 2 * flattening - Math.pow(flattening, 2);
- var e = this.e = Math.sqrt(e2);
- this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
- this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
- this.b0 = Math.asin(sinPhy0 / this.alpha);
- var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
- var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
- var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
- this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
- }
- export function forward(p) {
- var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
- var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
- var S = -this.alpha * (Sa1 + Sa2) + this.K;
- // spheric latitude
- var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
- // spheric longitude
- var I = this.alpha * (p.x - this.lambda0);
- // psoeudo equatorial rotation
- var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
- var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
- p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
- p.x = this.R * rotI + this.x0;
- return p;
- }
- export function inverse(p) {
- var Y = p.x - this.x0;
- var X = p.y - this.y0;
- var rotI = Y / this.R;
- var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
- var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
- var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
- var lambda = this.lambda0 + I / this.alpha;
- var S = 0;
- var phy = b;
- var prevPhy = -1000;
- var iteration = 0;
- while (Math.abs(phy - prevPhy) > 0.0000001) {
- if (++iteration > 20) {
- //...reportError("omercFwdInfinity");
- return;
- }
- //S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
- S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
- prevPhy = phy;
- phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
- }
- p.x = lambda;
- p.y = phy;
- return p;
- }
- export var names = ["somerc"];
- export default {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names
- };
|